These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 7346781)

  • 1. Hemodialysis of amino acids: basic studies in vitro.
    Riley V
    Nutr Cancer; 1981; 2(3):153-64. PubMed ID: 7346781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and practical considerations in the use of hemodialysis for the therapeutic removal of asparagine and other amino acids.
    Riley V; Spackman DH
    Nutr Cancer; 1981; 2(3):181-92. PubMed ID: 7346782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentrations of free amino acids and other blood components in a lymphoma patient during intensive hemodialysis.
    Riley V
    Nutr Cancer; 1981; 2(3):165-80. PubMed ID: 6896751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haemodiafiltration.
    Sprenger KB
    Life Support Syst; 1983; 1(2):127-36. PubMed ID: 6679009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide?
    Douma CE; de Waart DR; Struijk DG; Krediet RT
    Clin Nephrol; 1996 May; 45(5):295-302. PubMed ID: 8738660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urea kinetics during sustained low-efficiency dialysis in critically ill patients requiring renal replacement therapy.
    Marshall MR; Golper TA; Shaver MJ; Alam MG; Chatoth DK
    Am J Kidney Dis; 2002 Mar; 39(3):556-70. PubMed ID: 11877575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo effects of dialysate flow rate on Kt/V in maintenance hemodialysis patients.
    Hauk M; Kuhlmann MK; Riegel W; Köhler H
    Am J Kidney Dis; 2000 Jan; 35(1):105-11. PubMed ID: 10620551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of increasing blood flow rate on dialysis adequacy in hemodialysis patients.
    Borzou SR; Gholyaf M; Zandiha M; Amini R; Goodarzi MT; Torkaman B
    Saudi J Kidney Dis Transpl; 2009 Jul; 20(4):639-42. PubMed ID: 19587507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between effective ionic dialysance and in vivo urea clearance during hemodialysis.
    Lindsay RM; Bene B; Goux N; Heidenheim AP; Landgren C; Sternby J
    Am J Kidney Dis; 2001 Sep; 38(3):565-74. PubMed ID: 11532690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hemodialysis on protein synthesis.
    Löfberg E; Essén P; McNurlan M; Wernerman J; Garlick P; Anderstam B; Bergström J; Alvestrand A
    Clin Nephrol; 2000 Oct; 54(4):284-94. PubMed ID: 11076104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The basic, quantifiable parameter of dialysis prescription is Kt/V urea; treatment time is determined by the ultrafiltration requirement; all three parameters are of equal importance.
    Gotch F
    Blood Purif; 2007; 25(1):18-26. PubMed ID: 17170532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment time, chronic inflammation, and hemodynamic stability: the overlooked parameters in hemodialysis quantification.
    Zsom L; Zsom M; Fulop T; Flessner MF
    Semin Dial; 2008; 21(5):395-400. PubMed ID: 18945325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use.
    Ouseph R; Ward RA
    Am J Kidney Dis; 2001 Feb; 37(2):316-20. PubMed ID: 11157372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique.
    Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Scabardi M
    J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S53-61. PubMed ID: 11792763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of renal substitutive programs on amino acid patterns in chronic uremia.
    Scolari MP; Stefoni S; Mosconi G; Colì L; Feliciangeli G; Baldrati L; Buscaroli A; Prandini R; Bonomini V
    Kidney Int Suppl; 1983 Dec; 16():S77-80. PubMed ID: 6376922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled ultrafiltration (UF) with hemodialysis (HD): analysis of coupling between convective and diffusive mass transfer in a new HD-UF system.
    Kunitomo T; Lowrie EG; Kumazawa S; O'Brien M; Lazarus JM; Gottlieb MN; Merrill JP
    Trans Am Soc Artif Intern Organs; 1977; 23():234-43. PubMed ID: 910341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment time and ultrafiltration rate are more important in dialysis prescription than small molecule clearance.
    Twardowski ZJ
    Blood Purif; 2007; 25(1):90-8. PubMed ID: 17170543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct determination of blood recirculation rate in hemodialysis by a conductivity method.
    Bosc JY; LeBlanc M; Garred LJ; Marc JM; Foret M; Babinet F; Tetta C; Canaud B
    ASAIO J; 1998; 44(1):68-73. PubMed ID: 9466504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.