BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7347273)

  • 1. Sensitivity of flavoprotein fluorescence to oxidative state in single isolated heart cells.
    Koke JR; Wylie W; Wills M
    Cytobios; 1981; 32(127-128):139-45. PubMed ID: 7347273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contractile activity and oxidative metabolism in single adult myocytes during normoxia and hypoxia.
    Koke JR; Wills MA; Bittar N
    Cytobios; 1982; 35(139-140):149-56. PubMed ID: 7160225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral properties of fluorescent flavoproteins of isolated rat liver mitochondria.
    Kunz WS
    FEBS Lett; 1986 Jan; 195(1-2):92-6. PubMed ID: 3753688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms.
    Zima AV; Kockskämper J; Mejia-Alvarez R; Blatter LA
    J Physiol; 2003 Aug; 550(Pt 3):765-83. PubMed ID: 12824454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dinitrophenol pretreatment of rat ventricular myocytes protects against damage by metabolic inhibition and reperfusion.
    Rodrigo GC; Lawrence CL; Standen NB
    J Mol Cell Cardiol; 2002 May; 34(5):555-69. PubMed ID: 12056859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Simultaneous registration of pyridine nucleotides and flavoproteins in contracting myocardium by the luminescence method].
    Sarapul'tsev EI
    Tsitologiia; 1980 Oct; 22(10):1241-4. PubMed ID: 7445088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of fluorescence changes of NAD(P)H and of fluorescent flavoproteins in saponin-skinned human skeletal muscle fibers.
    Kunz WS; Kuznetsov AV; Winkler K; Gellerich FN; Neuhof S; Neumann HW
    Anal Biochem; 1994 Feb; 216(2):322-7. PubMed ID: 8179187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetics of flavoprotein and pyridine nucleotide oxidation in cardiac mitochondria in the presence of calcium.
    Chance B
    FEBS Lett; 1972 Oct; 26(1):315-9. PubMed ID: 4344294
    [No Abstract]   [Full Text] [Related]  

  • 10. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.
    Eng J; Lynch RM; Balaban RS
    Biophys J; 1989 Apr; 55(4):621-30. PubMed ID: 2720061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence mapping of mitochondrial redox changes in heart and brain.
    Barlow CH; Harden WR; Harken AH; Simson MB; Haselgrove JC; Chance B; O'Connor M; Austin G
    Crit Care Med; 1979 Sep; 7(9):402-6. PubMed ID: 223813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers.
    Kuznetsov AV; Mayboroda O; Kunz D; Winkler K; Schubert W; Kunz WS
    J Cell Biol; 1998 Mar; 140(5):1091-9. PubMed ID: 9490722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning fluorometer for the rapid assessment of pyridine nucleotide and flavoprotein fluorescence changes in tissues in vivo.
    Paddle BM; Brown G; Vincent P
    J Biomed Eng; 1986 Oct; 8(4):334-40. PubMed ID: 3762112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Inhibitory analysis of the functions of the oxidative metabolic systems of tumor cells in tissue culture].
    Lebedev OE; Sergeenko NG; Barskiĭ IIa; Papaian GV
    Tsitologiia; 1984 May; 26(5):588-93. PubMed ID: 6474574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cytoplasmic component of pyridine nucleotide fluorescence in rat diaphragm: evidence from comparisons with flavoprotein fluorescence.
    Paddle BM
    Pflugers Arch; 1985 Aug; 404(4):326-31. PubMed ID: 4059025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glutamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine dinucleotide in myocardium.
    Nuutinen EM; Hiltunen JK; Hassinen IE
    FEBS Lett; 1981 Jun; 128(2):356-60. PubMed ID: 7262326
    [No Abstract]   [Full Text] [Related]  

  • 17. Correlation between the redox state of NAD(P)H and total flow in the perfused rat liver.
    Höper J
    Adv Exp Med Biol; 1984; 169():583-8. PubMed ID: 6731113
    [No Abstract]   [Full Text] [Related]  

  • 18. NADH fluorescence in isolated guinea-pig and rat cardiomyocytes exposed to low or high stimulation rates and effect of metabolic inhibition with cyanide.
    Griffiths EJ; Lin H; Suleiman MS
    Biochem Pharmacol; 1998 Jul; 56(2):173-9. PubMed ID: 9698070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence spectroscopic detection of mitochondrial flavoprotein redox oscillations and transient reduction of the NADPH oxidase-associated flavoprotein in leukocytes.
    Kindzelskii A; Petty HR
    Eur Biophys J; 2004 Jul; 33(4):291-9. PubMed ID: 14574524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The KATP channel opener diazoxide protects cardiac myocytes during metabolic inhibition without causing mitochondrial depolarization or flavoprotein oxidation.
    Lawrence CL; Billups B; Rodrigo GC; Standen NB
    Br J Pharmacol; 2001 Oct; 134(3):535-42. PubMed ID: 11588107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.