These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 7348705)

  • 1. Biocompatibility of echinoderm skeleton with mammalian cells in vitro: preliminary evidence.
    Fontaine AR; Hall BD
    J Biomed Mater Res; 1981 Jan; 15(1):61-71. PubMed ID: 7348705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Use of fibroblast culture in the study of the interface between bone and ceramic].
    Blayney AW; Williams KR; Frootko NJ; Ashton BA
    Rev Laryngol Otol Rhinol (Bord); 1985; 106(5):343-5. PubMed ID: 3834552
    [No Abstract]   [Full Text] [Related]  

  • 3. Hard, soft tissue and in vitro cell response to porous nickel-titanium: a biocompatibility evaluation.
    Rhalmi S; Odin M; Assad M; Tabrizian M; Rivard CH; Yahia LH
    Biomed Mater Eng; 1999; 9(3):151-62. PubMed ID: 10572619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast seeding and culture in biodegradable porous substrates.
    Rivard CH; Chaput CJ; DesRosiers EA; Yahia LH; Selmani A
    J Appl Biomater; 1995; 6(1):65-8. PubMed ID: 7703539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Scanning electron microscopic studies of the biocompatibility of carbon glass structures in bone].
    Thieme V; Hofmann H; Heiner H; Müller T; Pompe W; Zieger M
    Zahn Mund Kieferheilkd Zentralbl; 1981; 69(6):472-84. PubMed ID: 6458973
    [No Abstract]   [Full Text] [Related]  

  • 6. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing macroporous bicontinuous materials as scaffolds for tissue engineering.
    Martina M; Subramanyam G; Weaver JC; Hutmacher DW; Morse DE; Valiyaveettil S
    Biomaterials; 2005 Oct; 26(28):5609-16. PubMed ID: 15878365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical properties and biocompatibility of cellulose/soy protein isolate membranes coagulated from acetic aqueous solution.
    Luo LH; Wang XM; Zhang YF; Liu YM; Chang PR; Wang Y; Chen Y
    J Biomater Sci Polym Ed; 2008; 19(4):479-96. PubMed ID: 18318960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of hydroxyapatite microstructure on human bone cell response.
    Rouahi M; Gallet O; Champion E; Dentzer J; Hardouin P; Anselme K
    J Biomed Mater Res A; 2006 Aug; 78(2):222-35. PubMed ID: 16628709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Preparation of human acellular amniotic membrane and its cytocompatibility and biocompatibility].
    Luo JC; Li XQ; Yang ZM
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Mar; 18(2):108-11. PubMed ID: 15065408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of biodegradable poly(butylene succinate) as a novel biomaterial.
    Li H; Chang J; Cao A; Wang J
    Macromol Biosci; 2005 May; 5(5):433-40. PubMed ID: 15889389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering.
    Ni S; Chang J; Chou L
    J Biomed Mater Res A; 2006 Jan; 76(1):196-205. PubMed ID: 16265636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).
    Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V
    J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro positive biocompatibility evaluation of glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors.
    Serrano MC; Portolés M; Pagani R; de Guinoa JS; Ruiz-Hernández E; Arcos D; Vallet-Regí M
    Tissue Eng Part A; 2008 May; 14(5):617-27. PubMed ID: 18399731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts.
    Oliva A; Della Ragione F; Salerno A; Riccio V; Tartaro G; Cozzolino A; D'Amato S; Pontoni G; Zappia V
    Biomaterials; 1996 Jul; 17(13):1351-6. PubMed ID: 8805985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Piezoelectric ceramic--a novel material for bone replacement].
    Chen L; Chen Z; Zhang M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):577-9, 782. PubMed ID: 11791312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new saw technique improves preparation of bone sections for light and electron microscopy.
    Klein CP; Sauren YM; Modderman WE; van der Waerden JP
    J Appl Biomater; 1994; 5(4):369-73. PubMed ID: 8580545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells.
    Rothamel D; Schwarz F; Sculean A; Herten M; Scherbaum W; Becker J
    Clin Oral Implants Res; 2004 Aug; 15(4):443-9. PubMed ID: 15248879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model porous surfaces for systematic studies of material-cell interactions.
    Petronis S; Gretzer C; Kasemo B; Gold J
    J Biomed Mater Res A; 2003 Sep; 66(3):707-21. PubMed ID: 12918055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell and tissue reactions to mineral trioxide aggregate and Portland cement.
    Saidon J; He J; Zhu Q; Safavi K; Spångberg LS
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2003 Apr; 95(4):483-9. PubMed ID: 12686935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.