These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
60 related articles for article (PubMed ID: 7349308)
1. Underestimation of auditory fatigue as measured by the compound action potential. Gans DP J Aud Res; 1980 Oct; 20(4):297-305. PubMed ID: 7349308 [TBL] [Abstract][Full Text] [Related]
2. Extratympanic electrocochleographic changes on noise-induced temporary threshold shift. Nam EC; Won JY Otolaryngol Head Neck Surg; 2004 Apr; 130(4):437-42. PubMed ID: 15100640 [TBL] [Abstract][Full Text] [Related]
3. Auditory evoked potentials in the Japanese monkey. Kamada T; Kameda K; Kojima S J Med Primatol; 1991 Aug; 20(6):284-9. PubMed ID: 1757970 [TBL] [Abstract][Full Text] [Related]
4. Prestin gene expression in the rat cochlea following intense noise exposure. Chen GD Hear Res; 2006 Dec; 222(1-2):54-61. PubMed ID: 17005342 [TBL] [Abstract][Full Text] [Related]
5. Effects of acoustic trauma on the cochlear potentials. Gans DP J Acoust Soc Am; 1983 Dec; 74(6):1742-6. PubMed ID: 6655132 [TBL] [Abstract][Full Text] [Related]
6. Effect of noise on the vestibular system - Vestibular evoked potential studies in rats. Sohmer H; Elidan J; Plotnik M; Freeman S; Sockalingam R; Berkowitz Z; Mager M Noise Health; 1999; 2(5):41-52. PubMed ID: 12689484 [TBL] [Abstract][Full Text] [Related]
7. [Abnormal augmentation of the evoked potential and morphological changes of guinea pig cochlea induced by cisplatin]. Li X; Sun W; Yu N Zhonghua Er Bi Yan Hou Ke Za Zhi; 1998 Aug; 33(4):199-202. PubMed ID: 11717881 [TBL] [Abstract][Full Text] [Related]
8. Corresponding effects of acoustic fatigue on the cochlear microphonic and the compound action potential. Pierson MG; Møller AR Hear Res; 1982 Jan; 6(1):61-82. PubMed ID: 7054136 [TBL] [Abstract][Full Text] [Related]
9. Summating potential-action potential waveform amplitude and width in the diagnosis of Menière's disease. Ikino CM; de Almeida ER Laryngoscope; 2006 Oct; 116(10):1766-9. PubMed ID: 17003737 [TBL] [Abstract][Full Text] [Related]
10. Short-time course of adaptation pattern after noise exposure: electrophysiological studies in man. von Wedel H; Walger M Audiology; 1987; 26(1):11-9. PubMed ID: 3593097 [TBL] [Abstract][Full Text] [Related]
11. A comparative study: TTS Vs wave V after exposure to noise. Kochanek K; Janczewski G; Abbate C; Giorgianni C; Munaò F; Beninato G; Germanò D G Ital Med Lav Ergon; 2002; 24(2):138-43. PubMed ID: 12161951 [TBL] [Abstract][Full Text] [Related]
12. Comparison of noise-induced changes of auditory brainstem and middle latency response amplitudes in rats. Popelar J; Grecova J; Rybalko N; Syka J Hear Res; 2008 Nov; 245(1-2):82-91. PubMed ID: 18812219 [TBL] [Abstract][Full Text] [Related]
17. Cochlear microphonics for hearing preservation in vestibular schwannoma surgery. Noguchi Y; Komatsuzaki A; Nishida H Laryngoscope; 1999 Dec; 109(12):1982-7. PubMed ID: 10591359 [TBL] [Abstract][Full Text] [Related]
18. Electrocochleography is more sensitive than distortion-product otoacoustic emission test for detecting noise-induced temporary threshold shift. Kim JS; Nam EC; Park SI Otolaryngol Head Neck Surg; 2005 Oct; 133(4):619-24. PubMed ID: 16213939 [TBL] [Abstract][Full Text] [Related]
19. The combined effects of forward masking by noise and high click rate on monaural and binaural human auditory nerve and brainstem potentials. Pratt H; Polyakov A; Bleich N; Mittelman N Hear Res; 2004 Jul; 193(1-2):83-94. PubMed ID: 15219323 [TBL] [Abstract][Full Text] [Related]
20. Changes in cochlear responses in guinea pig with changes in perilymphatic K+. Part I: summating potentials, compound action potentials and DPOAEs. Marcon S; Patuzzi R Hear Res; 2008 Mar; 237(1-2):76-89. PubMed ID: 18262371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]