These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 7349525)
1. [Digestive utilization of purified cellulose in the rainbow trout (Salmo gairdneri) and the common carp (Cyprinus carpio)]. Bergot F Reprod Nutr Dev (1980); 1981; 21(1):83-93. PubMed ID: 7349525 [TBL] [Abstract][Full Text] [Related]
2. [Qualitative and quantitative distribution of 7 enzymes in organs of the rainbow trout (Salmo gairdneri R.) and the carp (Cyprinus carpio)]. Scheinert P; Hoffmann R Zentralbl Veterinarmed A; 1987 May; 34(5):339-43. PubMed ID: 3113116 [No Abstract] [Full Text] [Related]
3. Some characteristics of mitochondrial monoamine oxidase activity in eggs of carp (Cyprinus carpio) and rainbow trout (Salmo gairdneri). Nicotra A; Senatori O Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(2):401-4. PubMed ID: 2565193 [TBL] [Abstract][Full Text] [Related]
4. Uptake metabolism, and elimination of 14C-labeled 1,2,4-trichlorobenzene in rainbow trout and carp. Melancon MJ; Lech JJ J Toxicol Environ Health; 1980 May; 6(3):645-58. PubMed ID: 7420471 [TBL] [Abstract][Full Text] [Related]
5. [Ultrastructural differences in the morphology of the optic tectum of the carp (Cyprinus carpio) and rainbow trout (Salmo gairdneri) with special reference to the synapses]. Choms A; Probst W; Rahmann H J Hirnforsch; 1981; 22(3):299-306. PubMed ID: 7276542 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of aldehyde dehydrogenase and alcohol dehydrogenase activities in crucian carp and three other vertebrates: apparent adaptations to ethanol production. Nilsson GE J Comp Physiol B; 1988; 158(4):479-85. PubMed ID: 3220990 [TBL] [Abstract][Full Text] [Related]
7. [Possibility of tissue accumulation and elimination of 3,4-benzpyrene from the bodies of fish]. Baranova LN; Dikun PP; Ostroumova IN; Timoshina LA Vopr Onkol; 1976; 22(11):102-5. PubMed ID: 1014502 [TBL] [Abstract][Full Text] [Related]
8. Identification and immunocytochemical localization of two different carbonic anhydrase isoenzymes in teleostean fish erythrocytes and gill epithelia. Rahim SM; Delaunoy JP; Laurent P Histochemistry; 1988; 89(5):451-9. PubMed ID: 3139588 [TBL] [Abstract][Full Text] [Related]
9. Fate of 2,5,4'-trichlorobiphenyl in outdoor ponds and its uptake via the food chain compared with direct uptake via the gills in grass carp and rainbow trout. Crossland NO; Bennett D; Wolff CJ Ecotoxicol Environ Saf; 1987 Apr; 13(2):225-38. PubMed ID: 3109874 [TBL] [Abstract][Full Text] [Related]
10. Binding of beta-adrenergic antagonists 3H-DHA and 3H-CGP 12177 to intact rainbow trout (Salmo gairdneri) and carp (Cyprinus carpio) red blood cells. Niina O; Marttila T; Nikinmaa M Gen Comp Endocrinol; 1988 Jun; 70(3):429-35. PubMed ID: 3417118 [TBL] [Abstract][Full Text] [Related]
11. Does the natural diet influence the intestine's ability to regulate glucose absorption? Buddington RK J Comp Physiol B; 1987; 157(5):677-88. PubMed ID: 3693623 [TBL] [Abstract][Full Text] [Related]
12. Influence of nutritional status on the daily patterns of nitrogen excretion in the carp (Cyprinus carpio L.) and the rainbow trout (Salmo gairdneri R.). Kaushik SJ Reprod Nutr Dev (1980); 1980; 20(6):1751-65. PubMed ID: 7349509 [TBL] [Abstract][Full Text] [Related]
13. Pharmacokinetics of sulphadimidine in carp (Cyprinus carpio L.) and rainbow trout (Salmo gairdneri Richardson) acclimated at two different temperature levels. van Ginneken VJ; Nouws JF; Grondel JL; Driessens F; Degen M Vet Q; 1991 Apr; 13(2):88-96. PubMed ID: 1882494 [TBL] [Abstract][Full Text] [Related]
14. Tissue-specific Cu bioaccumulation patterns and differences in sensitivity to waterborne Cu in three freshwater fish: rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and gibel carp (Carassius auratus gibelio). De Boeck G; Meeus W; De Coen W; Blust R Aquat Toxicol; 2004 Dec; 70(3):179-88. PubMed ID: 15550275 [TBL] [Abstract][Full Text] [Related]
15. Influence of cyanobacteria on water activity and dry matter of muscles in the common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss W.). Navratil L; Vlasek V; Langova J; Palikova M; Brabec T; Mares J; Kopp R; Klima Z; Navratil S Neuro Endocrinol Lett; 2012; 33 Suppl 3():120-3. PubMed ID: 23353854 [TBL] [Abstract][Full Text] [Related]
16. An antioxidant dependent in vitro response of rainbow trout (Salmo gairdneri) somatotrophs to carp growth hormone-releasing factor (GRF). Luo D; McKeown BA Horm Metab Res; 1989 Dec; 21(12):690-2. PubMed ID: 2515141 [No Abstract] [Full Text] [Related]
17. Differences in IgY gut absorption in gastric rainbow trout (Oncorhynchus mykiss) and agastric common carp (Cyprinus carpio) assessed in vivo and in vitro. Winkelbach A; Günzel D; Schulz C; Wuertz S Comp Biochem Physiol C Toxicol Pharmacol; 2015 Jan; 167():58-64. PubMed ID: 25224559 [TBL] [Abstract][Full Text] [Related]
18. Thermoacclimatory changes in the ionic microenvironment of haemoglobin in the stenothermal rainbow trout (Salmo gairdneri) and eurythermal carp (Cyprinus carpio). Houston AH; Smeda JS J Exp Biol; 1979 Jun; 80():317-40. PubMed ID: 501276 [TBL] [Abstract][Full Text] [Related]
19. Effect of Maillard browning reaction on protein utilization and plasma amino acid response by rainbow trout (Salmo gairdneri). Plakas SM; Lee TC; Wolke RE; Meade TL J Nutr; 1985 Dec; 115(12):1589-99. PubMed ID: 3934350 [TBL] [Abstract][Full Text] [Related]
20. In vitro digestibility study of some plant protein sources as aquafeed for carps Labeo rohita and Cyprinus carpio using pH-Stat method. Sharma JG; Kumar A; Saini D; Targay NL; Khangembam BK; Chakrabarti R Indian J Exp Biol; 2016 Sep; 54(9):606-11. PubMed ID: 28699726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]