These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 7350167)

  • 1. Polarity of microtubules nucleated by centrosomes and chromosomes of Chinese hamster ovary cells in vitro.
    Bergen LG; Kuriyama R; Borisy GG
    J Cell Biol; 1980 Jan; 84(1):151-9. PubMed ID: 7350167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of kinetochore microtubules in Chinese hamster ovary cells.
    Witt PL; Ris H; Borisy GG
    Chromosoma; 1980; 81(3):483-505. PubMed ID: 7449572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity and stability of centrosomes in Chinese hamster ovary cells in nucleation of microtubules in vitro.
    Kuriyama R
    J Cell Sci; 1984 Mar; 66():277-95. PubMed ID: 6540269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarity of kinetochore microtubules in Chinese hamster ovary cells after recovery from a colcemid block.
    Euteneuer U; Ris H; Borisy GG
    J Cell Biol; 1983 Jul; 97(1):202-8. PubMed ID: 6863391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly.
    Bergen LG; Borisy GG
    J Cell Biol; 1980 Jan; 84(1):141-50. PubMed ID: 7350166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding.
    Mitchison TJ; Kirschner MW
    J Cell Biol; 1985 Sep; 101(3):755-65. PubMed ID: 4030893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polarity and stability of microtubule capture by the kinetochore.
    Huitorel P; Kirschner MW
    J Cell Biol; 1988 Jan; 106(1):151-9. PubMed ID: 3339086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human chromosomes and centrioles as nucleating sites for the in vitro assembly of microtubules from bovine brain tubulin.
    McGill M; Brinkley BR
    J Cell Biol; 1975 Oct; 67(1):189-99. PubMed ID: 809450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle.
    Kuriyama R; Borisy GG
    J Cell Biol; 1981 Dec; 91(3 Pt 1):822-6. PubMed ID: 7328124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of mitotic centrosomal microtubule initiation capacity at the metaphase-anaphase transition.
    Snyder JA; Hamilton BT; Mullins JM
    Eur J Cell Biol; 1982 Jun; 27(2):191-9. PubMed ID: 7117266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation.
    Gould RR; Borisy GG
    J Cell Biol; 1977 Jun; 73(3):601-15. PubMed ID: 559676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule nucleation by gamma-tubulin-containing rings in the centrosome.
    Moritz M; Braunfeld MB; Sedat JW; Alberts B; Agard DA
    Nature; 1995 Dec; 378(6557):638-40. PubMed ID: 8524401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule-organizing centers abnormal in number, structure, and nucleating activity in x-irradiated mammalian cells.
    Sato C; Kuriyama R; Nishizawa K
    J Cell Biol; 1983 Mar; 96(3):776-82. PubMed ID: 6833383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement and segregation of kinetochores experimentally detached from mammalian chromosomes.
    Brinkley BR; Zinkowski RP; Mollon WL; Davis FM; Pisegna MA; Pershouse M; Rao PN
    Nature; 1988 Nov; 336(6196):251-4. PubMed ID: 3057382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamic behavior of individual microtubules associated with chromosomes in vitro.
    Hunt AJ; McIntosh JR
    Mol Biol Cell; 1998 Oct; 9(10):2857-71. PubMed ID: 9763448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centrosomal deployment of gamma-tubulin and pericentrin: evidence for a microtubule-nucleating domain and a minus-end docking domain in certain mouse epithelial cells.
    Mogensen MM; Mackie JB; Doxsey SJ; Stearns T; Tucker JB
    Cell Motil Cytoskeleton; 1997; 36(3):276-90. PubMed ID: 9067623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural polarity of kinetochore microtubules in PtK1 cells.
    Euteneuer U; McIntosh JR
    J Cell Biol; 1981 May; 89(2):338-45. PubMed ID: 7251657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reorganization of the centrosome and associated microtubules during the morphogenesis of a mouse cochlear epithelial cell.
    Henderson CG; Tucker JB; Chaplin MA; Mackie JB; Maidment SN; Mogensen MM; Paton CC
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():589-600. PubMed ID: 8207081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells.
    Yvon AM; Wadsworth P
    J Cell Sci; 1997 Oct; 110 ( Pt 19)():2391-401. PubMed ID: 9410878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the centrosome in organizing the interphase microtubule array: properties of cytoplasts containing or lacking centrosomes.
    Karsenti E; Kobayashi S; Mitchison T; Kirschner M
    J Cell Biol; 1984 May; 98(5):1763-76. PubMed ID: 6725398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.