These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 7350191)
1. Developmental changes in glucose transport of guinea pig erythrocytes. Kondo T; Beutler E J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191 [TBL] [Abstract][Full Text] [Related]
2. Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane. Kahlenberg A; Zala CA J Supramol Struct; 1977; 7(3-4):287-300. PubMed ID: 616483 [TBL] [Abstract][Full Text] [Related]
3. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes. Fröman G Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255 [TBL] [Abstract][Full Text] [Related]
4. Solubilization, reconstitution, and attempted affinity chromatography of the sugar transporter of the erythrocyte membrane. Weber J; Warden DA; Semenza G; Diedrich DF J Cell Biochem; 1985; 27(2):83-96. PubMed ID: 4039332 [TBL] [Abstract][Full Text] [Related]
5. Identification and properties of the glucose transporter of human erythrocytes. Hirano H; Kasahara M; Nagano M; Osumi M; Sase S; Takata K Tokai J Exp Clin Med; 1982; 7 Suppl():121-9. PubMed ID: 6892254 [TBL] [Abstract][Full Text] [Related]
6. Artefacts due to sodium dodecylsulfate polyacrylamide gel electrophoresis in the study of human erythrocyte membrane calcium binding protein. Boivin P; Bernard JF; Bournier O Biomedicine; 1976 Dec; 25(9):315. PubMed ID: 1000037 [TBL] [Abstract][Full Text] [Related]
7. [Urate transport in erythrocytes: possible role of a transport membrane]. Lucas-Heron B C R Seances Soc Biol Fil; 1978; 172(4):759-83. PubMed ID: 154956 [TBL] [Abstract][Full Text] [Related]
8. Cytochalasin B-binding proteins in rabbit erythrocyte membranes and their post-natal change in relation to the glucose carrier activity. Jung CY; Pinkofsky HB; Cowden MW Biochim Biophys Acta; 1980 Mar; 597(1):145-54. PubMed ID: 7370240 [TBL] [Abstract][Full Text] [Related]
9. Glucose transport carrier of human erythrocytes. Radiation-target size of glucose-sensitive cytochalasin B binding protein. Jung CY; Hsu TL; Hah JS; Cha C; Haas MN J Biol Chem; 1980 Jan; 255(2):361-4. PubMed ID: 7356617 [TBL] [Abstract][Full Text] [Related]
10. [Effect of Ca2+ on glucose penetration through the pink ghosts of human erythrocytes]. Matus VK; Kozlova NM; Chernitskiĭ EA Biofizika; 1979; 24(2):242-7. PubMed ID: 444601 [TBL] [Abstract][Full Text] [Related]
11. The glucose transport activity of human erythrocyte membranes. Reconstitution in phospholipid liposomes and fractionation by molecular sieve and ion exchange chromatography. Fröman G; Acevedo F; Lundahl P; Hjertén S Biochim Biophys Acta; 1980 Aug; 600(2):489-501. PubMed ID: 7407124 [TBL] [Abstract][Full Text] [Related]
12. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
13. Interaction of DL-, D- and L-propranolol with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I Arzneimittelforschung; 1979; 29(11):1685-7. PubMed ID: 44472 [TBL] [Abstract][Full Text] [Related]
14. Evidence for multiple affinities for D-glucose inside the human erythrocyte membrane [proceedings]. Baker GF; Naftalin RJ J Physiol; 1977 Oct; 271(2):46P-47P. PubMed ID: 925997 [No Abstract] [Full Text] [Related]
15. The effect of the strongly bound protein fraction on sugar transport in human erythrocyte ghosts. Benes I Biochim Biophys Acta; 1978 Jul; 511(1):120-4. PubMed ID: 667055 [TBL] [Abstract][Full Text] [Related]
16. Reconstitution of D-glucose transport in vesicles composed of lipids and a partially purified protein from the human erythrocyte membrane. Zala CA; Kahlenberg A Biochem Biophys Res Commun; 1976 Oct; 72(3):866-74. PubMed ID: 985523 [No Abstract] [Full Text] [Related]
17. Erythrocyte D-glucose transport activity in reconstituted model membranes of different lipid composition. Cestaro B; Cervato G; Carandente O; Girardi AM; Pozza G Biochem Int; 1988 Feb; 16(2):323-9. PubMed ID: 3365265 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of glucose transport using human erythrocyte band 3. Shelton RL; Langdon RG Biochim Biophys Acta; 1983 Aug; 733(1):25-33. PubMed ID: 6683973 [TBL] [Abstract][Full Text] [Related]
19. [Content of intracellular ATP and structural state of proteins in the erythrocyte membrane]. Slobozhanina EI; Chernitskiĭ EA; Koslova NM Biofizika; 1982; 27(3):425-9. PubMed ID: 7093324 [TBL] [Abstract][Full Text] [Related]
20. Reconstitution of glucose-transporting vesicles from erythrocyte membranes disaggregated in detergent. Edwards PA Biochem J; 1977 Apr; 164(1):125-9. PubMed ID: 880225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]