These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 7350697)

  • 1. The effect of hemorrhagic shock on potassium transport in skeletal muscle.
    Illner H; Shires GT
    Surg Gynecol Obstet; 1980 Jan; 150(1):17-25. PubMed ID: 7350697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular sodium and potassium changes in vascular smooth muslce during hemorrhagic shock.
    Day B; Friedman SM
    Surg Gynecol Obstet; 1978 Jul; 147(1):25-6. PubMed ID: 663804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium shifts during hemorrhagic shock in baboons.
    Holcroft JW; Trunkey DD; Carpenter MA
    Surg Forum; 1974; 25(0):66-8. PubMed ID: 4439258
    [No Abstract]   [Full Text] [Related]  

  • 4. Intracellular potassium concentrations and extracellular spaces in rat skeletal muscles immersed in normal, hypotonic and high-K modified Krebs fluid, determined by potassium-selective microelectrodes [proceedings].
    Kernan RP; MacDermott M
    J Physiol; 1976 Dec; 263(1):158P-160P. PubMed ID: 1011119
    [No Abstract]   [Full Text] [Related]  

  • 5. Dexamethasone treatment during hemorrhagic shock: changes in extracellular fluid volume and cell membrane transport.
    Grinstein-Nadler E; Bottoms GD
    Am J Vet Res; 1976 Nov; 37(11):1337-43. PubMed ID: 984566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Intra-extracellular ion changes in heart and skeletal muscle in experimental hemorrhagic shock].
    Reuter U; Sinz V
    Z Exp Chir; 1982; 15(2):86-102. PubMed ID: 7090467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sepsis on intracellular sodium activity, sodium concentration, and water content in thermal injured rat.
    Chiao JJ; Jones WG; Shires GT; Barber AE; Shires GT
    Circ Shock; 1992 Sep; 38(1):42-9. PubMed ID: 1394863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular-intracellular lactate gradients in skeletal muscle during hemorrhagic shock in the rat.
    Pearce FJ; Connett RJ; Drucker WR
    Surgery; 1985 Oct; 98(4):625-31. PubMed ID: 4049240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular function in liver and muscle during hemorrhagic shock in primates.
    Peitzman AB; Corbett WA; Shires GT; Illner H; Shires GT; Inamdar R
    Surg Gynecol Obstet; 1985 Nov; 161(5):419-24. PubMed ID: 4049213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of septic shock on skeletal muscle action potentials in the primate.
    Trunkey DD; Illner H; Wagner IY; Shires GT
    Surgery; 1979 Jun; 85(6):638-43. PubMed ID: 109938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Hidden" cellular electrolyte responses to hemorrhagic shock and their significance.
    Haljamäe H
    Rev Surg; 1970; 27(5):315-24. PubMed ID: 4924449
    [No Abstract]   [Full Text] [Related]  

  • 13. [Myocardial potassium content in hemorrhagic shock and its modification by digitalis].
    Krämer KD; Kult J; Hochrein H
    Z Kreislaufforsch; 1972 Nov; 61(11):1035-43. PubMed ID: 4656441
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of membrane potential and calcium kinetic changes in the pathogenesis of vascular hyporeactivity during severe shock.
    Zhao K; Liu J; Jin C
    Chin Med J (Engl); 2000 Jan; 113(1):59-64. PubMed ID: 11775213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle intracellular electrolytes in patients with chronic uremia.
    Bergström J; Alvestrand A; Fürst P; Hultman E; Widstam-Attorps U
    Kidney Int Suppl; 1983 Dec; 16():S153-60. PubMed ID: 6588246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinylcholine-induced hyperkalemia: effects of succinylcholine on resting potentials and electrolyte distributions in normal and denervated muscle.
    Kendig JJ; Bunker JP; Endow S
    Anesthesiology; 1972 Feb; 36(2):132-7. PubMed ID: 5059102
    [No Abstract]   [Full Text] [Related]  

  • 17. [The sodium-potassium-chloride cotransport of the cell membrane].
    Urazaev AKh
    Usp Fiziol Nauk; 1998; 29(2):12-38. PubMed ID: 9659682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of intracellular free magnesium using ion-selective microelectrodes: evidence for an Na/Mg exchange mechanism in skeletal muscle.
    Blatter LA
    Magnes Trace Elem; 1991-1992; 10(2-4):67-79. PubMed ID: 1844563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell sodium and potassium changes in hemorrhagic shock measured by a lithium substitution method.
    Day B; Friedman SM; Morton KS
    Surg Forum; 1977; 28():1-2. PubMed ID: 617384
    [No Abstract]   [Full Text] [Related]  

  • 20. Sodium and water content of connective versus cellular tissue following hemorrhage.
    Slonim M; Stahl WM
    Surg Forum; 1968; 19():53-4. PubMed ID: 5718409
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.