These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 7350697)

  • 21. Shock reactions in skeletal muscle. IV. The effect of hypothermic treatment on cellular electrolyte responses to haemorrhagic shock.
    Hagberg S; Haljamäe H; Röckert H
    Acta Chir Scand; 1970; 136(1):23-8. PubMed ID: 5518663
    [No Abstract]   [Full Text] [Related]  

  • 22. The role of chloride transport in the control of the membrane potential in skeletal muscle--theory and experiment.
    Gallaher J; Bier M; Siegenbeek van Heukelom J
    Biophys Chem; 2009 Jul; 143(1-2):18-25. PubMed ID: 19361905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular transport defects in hemorrhagic shock.
    Cunningham JN; Shires GT; Wagner Y
    Surgery; 1971 Aug; 70(2):215-22. PubMed ID: 5560182
    [No Abstract]   [Full Text] [Related]  

  • 24. Sodium and sulfate distributions in dogs after hemorrhagic shock.
    Newton WT; Pease HD; Butcher HR
    Surg Forum; 1969; 20():1-2. PubMed ID: 4910579
    [No Abstract]   [Full Text] [Related]  

  • 25. [Myocardial cells action potential and contractive function in hemorrhagic shock in rabbits].
    Lu S; Liu G; Guo S; Wang C; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):225-9. PubMed ID: 11326837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Neurotrophic control of the resting membrane potential of phasic muscle fibers in frogs].
    Volkov EM; Poletaev GI
    Fiziol Zh SSSR Im I M Sechenova; 1981 Dec; 67(12):1807-13. PubMed ID: 7037469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion transport in circulatory and/or septic shock.
    Sayeed MM
    Am J Physiol; 1987 May; 252(5 Pt 2):R809-21. PubMed ID: 3555121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peroxynitrite leads to arteriolar smooth muscle cell membrane hyperpolarization and low vasoreactivity in severe shock.
    Zhao KS; Liu J; Yang GY; Jin C; Huang Q; Huang X
    Clin Hemorheol Microcirc; 2000; 23(2-4):259-67. PubMed ID: 11321449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of hemorrhagic shock and treatment with hypothermia on the potassium content and transport of single mammalian skeletal muscle cells.
    Haljamäe H
    Acta Physiol Scand; 1970 Feb; 78(2):189-200. PubMed ID: 5456883
    [No Abstract]   [Full Text] [Related]  

  • 30. Infusion of very hypertonic saline to bled rats: membrane potentials and fluid shifts.
    Nakayama S; Kramer GC; Carlsen RC; Holcroft JW
    J Surg Res; 1985 Feb; 38(2):180-6. PubMed ID: 3968876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water and electrolyte changes in skeletal and cardiac muscles of rats during prolonged hypokinesia.
    Zorbas YG; Kakuris KK; Neofitos EA; Afoninos NI
    Physiol Chem Phys Med NMR; 2005; 37(2):127-40. PubMed ID: 17022373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The "anomalous" relationship between the concentration of potassium in the medium and the membrane potential of muscle fibers with a decreased intracellular potassium concentration. II. Rate of forward and reverse K42 transport through muscle fiber membranes in saccharose-sulfate solutions with potassium concentrations of 2.5 and 75 mM].
    Vereninov AA; Vinogradova TA; Toropova FV
    Tsitologiia; 1976 Jan; 18(1):66-73. PubMed ID: 941275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Comparative analysis of potassium and sodium flux across a muscle fiber membrane in a saline medium deficient in alkali metal cations].
    Vereninov AA; Marakhova II
    Tsitologiia; 1981 Mar; 23(3):312-22. PubMed ID: 6972647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Na-K transport in rat liver slices in hemorrhagic shock.
    Sayeed MM; Baue AE
    Am J Physiol; 1973 Jun; 224(6):1265-70. PubMed ID: 4712137
    [No Abstract]   [Full Text] [Related]  

  • 35. Changes in the interstitial fluid and the muscle water in rabbits in hemorrhagic shock.
    Wolcott MW; Malinin TI; Wu NM
    Ann Surg; 1976 Dec; 184(6):728-33. PubMed ID: 11754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrolyte and enzyme gradients in plasma, lymph and interstitial fluid during shock.
    Sacks EI; Fewel J; Hsieh J; Rush BF
    Surg Forum; 1970; 21():44-6. PubMed ID: 5514916
    [No Abstract]   [Full Text] [Related]  

  • 37. The permeability and barrier functions of the oral mucosa with respect to water and electrolytes. Studies of the transport of water, sodium and potassium through the human mucosal surface in vivo.
    Kaaber S
    Acta Odontol Scand Suppl; 1974; 32(66):3-47. PubMed ID: 4534327
    [No Abstract]   [Full Text] [Related]  

  • 38. Red cell sodium and potassium in hemorrhagic shock measured by lithium substitution analysis.
    Day B; Friedman SM
    J Trauma; 1980 Jan; 20(1):52-4. PubMed ID: 7351678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Water-electrolyte and acid-base changes. I. Potassium metabolism].
    Velásquez-Jones L
    Bol Med Hosp Infant Mex; 1988 Jun; 45(6):403-6. PubMed ID: 2844203
    [No Abstract]   [Full Text] [Related]  

  • 40. The physical state of potassium in frog skeletal muscle studied by ion-sensitive microelectrodes and by electron microscopy: interpretation of seemingly incompatible results.
    Edelmann L
    Scanning Microsc; 1989 Dec; 3(4):1219-30. PubMed ID: 2633339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.