These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 7350993)

  • 1. An olfactory input to the hippocampus of the cat: field potential analysis.
    Habets AM; Lopes Da Silva FH; Mollevanger WJ
    Brain Res; 1980 Jan; 182(1):47-64. PubMed ID: 7350993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hippocampal potentials evoked by stimulation of olfactory basal forebrain and lateral septum in the rat.
    Overmann SR; Woolley DE; Bornschein RL
    Brain Res Bull; 1980; 5(4):437-49. PubMed ID: 7407639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inputs from the olfactory bulb and olfactory cortex to the entorhinal cortex in the cat. II. Physiological studies.
    Boeijinga PH; Van Groen T
    Exp Brain Res; 1984; 57(1):40-8. PubMed ID: 6519229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efferent evoked responses in the olfactory pathway of the cat.
    Guevara-Aguilar R; Aguilar-Baturoni HU; ArĂ©chiga H; Alcocer-CuarĂ³n C
    Electroencephalogr Clin Neurophysiol; 1973 Jan; 34(1):23-32. PubMed ID: 4118432
    [No Abstract]   [Full Text] [Related]  

  • 5. Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus.
    Uva L; de Curtis M
    Neuroscience; 2005; 130(1):249-58. PubMed ID: 15561441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of synaptic plasticity in the hippocampus and piriform cortex by physiologically meaningful olfactory cues in an olfactory association task.
    Chaillan FA; Roman FS; Soumireu-Mourat B
    J Physiol Paris; 1996; 90(5-6):343-7. PubMed ID: 9089510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory inputs activate the medial entorhinal cortex via the hippocampus.
    Biella G; de Curtis M
    J Neurophysiol; 2000 Apr; 83(4):1924-31. PubMed ID: 10758103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysynaptic activation of the dentate gyrus of the hippocampal formation: an olfactory input via the lateral entorhinal cortex.
    Wilson RC; Steward O
    Exp Brain Res; 1978 Nov; 33(3-4):523-34. PubMed ID: 215436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic organization of olfactory inputs and local circuits in the entorhinal cortex: a current source density analysis in the cat.
    Van Groen T; Lopes da Silva FH; Wadman WJ
    Exp Brain Res; 1987; 67(3):615-22. PubMed ID: 3653319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antidromic units in the prepyriform cortex driven by olfactory peduncular volleys.
    Willey TJ; Maeda G; Rafuse D
    Brain Res; 1975 Jul; 92(1):132-6. PubMed ID: 1174940
    [No Abstract]   [Full Text] [Related]  

  • 11. A transthalamic olfactory pathway to orbitofrontal cortex in the monkey.
    Yarita H; Iino M; Tanabe T; Kogure S; Takagi SF
    J Neurophysiol; 1980 Jan; 43(1):69-85. PubMed ID: 6766180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olfactory nerves and their excitatory action in the olfactory bulb.
    Nicoll RA
    Exp Brain Res; 1972; 14(2):185-97. PubMed ID: 5016588
    [No Abstract]   [Full Text] [Related]  

  • 14. Organization of inhibition in the rat olfactory bulb external plexiform layer.
    Ezeh PI; Wellis DP; Scott JW
    J Neurophysiol; 1993 Jul; 70(1):263-74. PubMed ID: 8395579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unitary analysis of opossum prepyriform cortex.
    Haberly LB
    J Neurophysiol; 1973 Jul; 36(4):762-74. PubMed ID: 4713318
    [No Abstract]   [Full Text] [Related]  

  • 16. Intracellular olfactory response of hippocampal neurons in awake, sitting squirrel monkeys.
    Yokota T; Reeves AG; MacLean PD
    Science; 1967 Sep; 157(3792):1072-4. PubMed ID: 4962432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE; Goodman JH; Du F; Schwarcz R
    J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional link between the limbic cortex and ventral striatum: physiology of the subiculum accumbens pathway.
    Lopes da Silva FH; Arnolds DE; Neijt HC
    Exp Brain Res; 1984; 55(2):205-14. PubMed ID: 6745361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.