These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7351224)

  • 41. Correlation between the topographical distribution of [3H]GABA uptake and primary afferent depolarization in the frog spinal cord.
    Glusman S
    Brain Res; 1975 Apr; 88(1):109-14. PubMed ID: 1122389
    [No Abstract]   [Full Text] [Related]  

  • 42. Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons.
    Holzer P; Maggi CA
    Neuroscience; 1998 Sep; 86(2):389-98. PubMed ID: 9881854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibitory actions from low and high threshold cutaneous afferents on groups II and III muscle afferent pathways in the spinal cat.
    Jeneskog T
    Acta Physiol Scand; 1979 Dec; 107(4):297-308. PubMed ID: 232364
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Excitation of mouse motoneurones by GABA-mediated primary afferent depolarization.
    Duchen MR
    Brain Res; 1986 Jul; 379(1):182-7. PubMed ID: 3017508
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Afferent stimulation frequency modulates GABAergic phenomena in the spinal cord: reversal by benzodiazepine antagonists.
    Polc P; Ducić I
    Brain Res; 1990 Oct; 531(1-2):286-9. PubMed ID: 1963101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrical coupling between primary afferents and amphibian motoneurons.
    Shapovalov AI; Shiriaev BI
    Exp Brain Res; 1978 Nov; 33(3-4):299-312. PubMed ID: 215428
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat.
    Cervero F; Connell LA
    J Comp Neurol; 1984 Nov; 230(1):88-98. PubMed ID: 6096416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wiring diagrams of functional connectivity in monosynaptic reflex arcs of the spinal cord.
    Lüscher HR; Mathis J; Henneman E
    Neurosci Lett; 1984 Mar; 45(2):217-22. PubMed ID: 6728315
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spontaneous miniature potentials in primary afferent fibres.
    Shapovalov AI; Shiriaev BI
    Experientia; 1979 Mar; 35(3):348-9. PubMed ID: 446612
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The spinal projection of individual identified A-delta- and C-fibers.
    Traub RJ; Mendell LM
    J Neurophysiol; 1988 Jan; 59(1):41-55. PubMed ID: 3343604
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of MK-801 on rat primary afferent neurons and fibers.
    McNeill DL; Sherburn EW; Galbraith JM; Klein CM; Westermeyer MM; Pilcher BK; Shew RL; Papka RE
    Brain Res Bull; 1991 Jul; 27(1):41-5. PubMed ID: 1933433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Functional characteristics of foot skin mechanoreceptors and afferent nerve fibers of the sciatic nerve after central axotomy of sensory neurons].
    Kolosova LI; Akoev GN; Moiseeva AB; Riabchikova OV
    Ross Fiziol Zh Im I M Sechenova; 1998 Aug; 84(8):755-60. PubMed ID: 9845893
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The response of rat spinal cord cells to unmyelinated afferents after peripheral nerve section and after changes in substance P levels.
    Wall PD; Fitzgerald M; Gibson SJ
    Neuroscience; 1981; 6(11):2205-15. PubMed ID: 6276809
    [No Abstract]   [Full Text] [Related]  

  • 54. Analysis of individual Ia-afferent EPSPs in a homonymous motoneuron pool with respect to muscle topography.
    Lucas SM; Cope TC; Binder MD
    J Neurophysiol; 1984 Jan; 51(1):64-74. PubMed ID: 6229610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat.
    Vinay L; Clarac F
    Neuroscience; 1999 Apr; 90(1):165-76. PubMed ID: 10188943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The responses of frog muscle spindles during stimulation of slow motor axons.
    Proske U
    Exp Brain Res; 1982; 45(3):364-70. PubMed ID: 6461562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids.
    Evans RH
    J Physiol; 1980 Jan; 298():25-35. PubMed ID: 6965722
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Firing of spinal motoneurones due to electrical interaction in the rat: an in vitro study.
    Arasaki K; Kudo N; Nakanishi T
    Exp Brain Res; 1984; 54(3):437-45. PubMed ID: 6723863
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiological and morphological correlates of presynaptic inhibition in primary afferents of the lamprey spinal cord.
    Batueva I; Tsvetkov E; Sagatelyan A; Buchanan JT; Vesselkin N; Adanina V; Suderevskaya E; Rio JP; Reperant J
    Neuroscience; 1999; 88(3):975-87. PubMed ID: 10363832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effects of serotonin-IA receptors on amino acid and dopaminergic responses of neurons].
    Abramets II; Komissarov IV; Samoĭlovich IM
    Biull Eksp Biol Med; 1991 Dec; 112(12):609-10. PubMed ID: 1777625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.