These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 7351234)
1. Morphological and biochemical differences among grossly-defined types of swine aortic atherosclerotic lesions induced by a combination of injury and atherogenic diet. Fritz KE; Daoud AS; Augustyn JM; Jarmolych J Exp Mol Pathol; 1980 Feb; 32(1):61-72. PubMed ID: 7351234 [No Abstract] [Full Text] [Related]
2. Preproliferative phase of atherosclerosis in swine fed cholesterol. Thomas WA; Florentin RA; Nam SC; Kim DN; Jones RM; Lee KT Arch Pathol; 1968 Dec; 86(6):621-43. PubMed ID: 5701635 [No Abstract] [Full Text] [Related]
3. Sequential study of biochemical changes during regression of swine aortic atherosclerotic lesions. Fritz KE; Augustyn JM; Jarmolych J; Daoud AS Arch Pathol Lab Med; 1981 May; 105(5):240-6. PubMed ID: 6894366 [TBL] [Abstract][Full Text] [Related]
4. Biochemical effects of moderate diet and clofibrate on swine atherosclerosis. Augustyn JM; Fritz KE; Daoud AD; Jarmolych H; Lee KT Arch Pathol Lab Med; 1978 Jun; 102(6):294-7. PubMed ID: 580721 [TBL] [Abstract][Full Text] [Related]
5. Regression of complicated atherosclerotic lesions in the abdominal aortas of swine. Daoud AS; Fritz KE; Jarmolych J; Augustyn JM; Lee KT; Thomas WA Adv Exp Med Biol; 1977; 82():447-52. PubMed ID: 920401 [No Abstract] [Full Text] [Related]
6. Role of lipophages in the development of rat atheroma. Bálint A; Veress B; Nagy Z; Jellinek H Atherosclerosis; 1972; 15(1):7-15. PubMed ID: 5013279 [No Abstract] [Full Text] [Related]
7. Partial suppression by pyridinolcarbamate of growth and necrosis of atherosclerotic lesions in swine subjected to an atherogenic regimen that produces advanced lesions. Lee WM; Lee KT; Thomas WA Exp Mol Pathol; 1979 Feb; 30(1):85-93. PubMed ID: 421864 [No Abstract] [Full Text] [Related]
8. Removal of cholesteryl esters from diet-induced atherosclerotic lesions in two long-term studies in rhesus monkeys. Bhattacharyya AK; Strong JP Exp Mol Pathol; 2003 Jun; 74(3):291-7. PubMed ID: 12782017 [TBL] [Abstract][Full Text] [Related]
9. Failure of egg-yolk feeding to accelerate progress of atherosclerosis in older female swine. Luginbühl H; Ratcliffe HL; Detweiler DK Virchows Arch A Pathol Pathol Anat; 1969; 348(3):281-9. PubMed ID: 5307848 [No Abstract] [Full Text] [Related]
10. Dietary-induced atherosclerosis in miniature swine. Florentin RA; Nam SC; Daoud AS; Jones R; Scott RF; Morrison ES; Kim DN; Lee KT; Thomas WA; Dodds WJ; Miller KD Exp Mol Pathol; 1968 Jun; 8(3):263-301. PubMed ID: 5659440 [No Abstract] [Full Text] [Related]
11. Dietary-induced atherosclerotic lesions have increased levels of acidic FGF mRNA and altered cytoskeletal and extracellular matrix mRNA expression. Liau G; Winkles JA; Cannon MS; Kuo L; Chilian WM J Vasc Res; 1993; 30(6):327-32. PubMed ID: 7694665 [TBL] [Abstract][Full Text] [Related]
12. [Role of pre-atheromatous experimental lesions in the atherogenic process]. Căluşer I; Mureşan A Morphol Embryol (Bucur); 1975; 21(4):305-8. PubMed ID: 131247 [No Abstract] [Full Text] [Related]
13. Regression of advanced atherosclerosis in swine: chemical studies. Fritz KE; Augustyn JM; Jarmolych J; Daoud AS; Lee KT Arch Pathol Lab Med; 1976 Jul; 100(7):380-5. PubMed ID: 947158 [TBL] [Abstract][Full Text] [Related]
14. Aortic respiration and glycolysis in the pre-proliferative phase of diet-induced atherosclerosis in swine. Scott RF; Morrison ES; Kroms M J Atheroscler Res; 1969; 9(1):5-16. PubMed ID: 5779583 [No Abstract] [Full Text] [Related]
15. Ultrastructural features of aortic cells in mitosis in control and cholesterol-fed swine. Imai H; Lee KJ; Lee SK; Lee KT; O'Neal RM; Thomas WA Lab Invest; 1970 Oct; 23(4):401-15. PubMed ID: 5527807 [No Abstract] [Full Text] [Related]
16. Distribution of intimal smooth muscle cell masses and their relationship to early atherosclerosis in the abdominal aortas of young swine. Scott RF; Thomas WA; Lee WM; Reiner JM; Florentin RA Atherosclerosis; 1979 Nov; 34(3):291-301. PubMed ID: 518740 [TBL] [Abstract][Full Text] [Related]
17. The "turning off" of excessive cell replicative activity in advanced atherosclerotic lesions of swine by a regression diet. Kim DN; Schmee J; Ho HT; Thomas WA Atherosclerosis; 1988 Jun; 71(2-3):131-42. PubMed ID: 3401286 [TBL] [Abstract][Full Text] [Related]
18. The effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) on necrosis of atherosclerotic lesions. Daoud AS; Frank AS; Jarmolych J; Fritz KE Atherosclerosis; 1987 Sep; 67(1):41-8. PubMed ID: 3118892 [TBL] [Abstract][Full Text] [Related]
19. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Sirol M; Itskovich VV; Mani V; Aguinaldo JG; Fallon JT; Misselwitz B; Weinmann HJ; Fuster V; Toussaint JF; Fayad ZA Circulation; 2004 Jun; 109(23):2890-6. PubMed ID: 15184290 [TBL] [Abstract][Full Text] [Related]
20. Population dynamics of arterial cells during atherogenesis. VIII. Separation of the roles of injury and growth stimulation in early aortic atherogenesis in swine originating in pre-existing intimal smooth muscle cell masses. Thomas WA; Reiner JM; Florentin RA; Scott RF Exp Mol Pathol; 1979 Aug; 31(1):124-44. PubMed ID: 456471 [No Abstract] [Full Text] [Related] [Next] [New Search]