These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 735137)

  • 1. Role of vitamin K in oxidative phosphorylation in mycobacteria.
    Murthy PS
    World Rev Nutr Diet; 1978; 31():210-5. PubMed ID: 735137
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of vitamin K1 in coupled oxidative phosphorylation.
    BRODIE AF; WEBER MM; GRAY CT
    Biochim Biophys Acta; 1957 Aug; 25(2):448-9. PubMed ID: 13471606
    [No Abstract]   [Full Text] [Related]  

  • 3. Oxidative phosphorylation in fractionated bacterial systems. IV. Enzymic formation of reduced intermediates from vitamin K1.
    RUSSELL PJ; BRODIE AF
    Biochim Biophys Acta; 1961 Jun; 50():76-81. PubMed ID: 13744856
    [No Abstract]   [Full Text] [Related]  

  • 4. The reconstitution of oxidative phosphorylation in Mycobacterium phlei with cis- and trans-phylloquinone. Evidence against isomerization.
    DiMari SJ; Rapoport H
    Biochemistry; 1968 Jul; 7(7):2650-2. PubMed ID: 5660080
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of the quinone in oxidative phosphorylation. Evidence against carbon-ooxygen bond cleavage.
    Snyder CD; Rapoport H
    Biochemistry; 1968 Jun; 7(6):2318-26. PubMed ID: 5660056
    [No Abstract]   [Full Text] [Related]  

  • 6. [Cis-trans isomerism of menaquinones and phosphorylating oxidations in extracts of Mycobacterium phlei].
    Scherrer F; Azerad R
    Experientia; 1970 Nov; 26(11):1201-3. PubMed ID: 5485277
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of the quinone in oxidative phosphorylation. Evidence against carbon-hydrogen bond cleavage.
    Di Mari SJ; Snyder CD; Rapoport H
    Biochemistry; 1968 Jun; 7(6):2301-17. PubMed ID: 5660055
    [No Abstract]   [Full Text] [Related]  

  • 8. Resolution and reconstitution of the succinoxidase pathway of Mycobacterium phlei.
    Kalra VK; Murti CR; Brodie AF
    Arch Biochem Biophys; 1971 Dec; 147(2):734-43. PubMed ID: 4332729
    [No Abstract]   [Full Text] [Related]  

  • 9. Possible function of vitamin K and related quinones in oxidative phosphorylation.
    Dallam RD
    Am J Clin Nutr; 1961; 9(4)Pt 2(4):104-8. PubMed ID: 13719445
    [No Abstract]   [Full Text] [Related]  

  • 10. Variations in the pathways of malate oxidation and phosphorylation in different species of Mycobacteria.
    Prasada Reddy TL; Suryanarayana Murthy P; Venkitasubramanian TA
    Biochim Biophys Acta; 1975 Feb; 376(2):210-8. PubMed ID: 234747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone restoration of coupled phosphorylation in Mycobacterium phlei.
    Phillips PG; Revsin B; Drell EG; Brodie AF
    Arch Biochem Biophys; 1970 Jul; 139(1):59-66. PubMed ID: 5471252
    [No Abstract]   [Full Text] [Related]  

  • 12. Distribution of mevalonate and glyceraldehyde 3-phosphate/pyruvate routes for isoprenoid biosynthesis in some gram-negative bacteria and mycobacteria.
    Putra SR; Disch A; Bravo JM; Rohmer M
    FEMS Microbiol Lett; 1998 Jul; 164(1):169-75. PubMed ID: 9675863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological function of terpenoid quinones.
    Brodie AF
    Biochem J; 1969 Jul; 113(3):25P-26P. PubMed ID: 5807188
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzymatic formation of a phosphorylated derivative of vitamin K.
    Watanabe T; Brodie AF
    Proc Natl Acad Sci U S A; 1966 Sep; 56(3):940-5. PubMed ID: 5230188
    [No Abstract]   [Full Text] [Related]  

  • 15. Vitamin K and chemical carcinogenesis.
    Hadler HI; Cao TM
    Lancet; 1978 Feb; 1(8060):397. PubMed ID: 75436
    [No Abstract]   [Full Text] [Related]  

  • 16. Biological function of terpenoid guinones.
    Brodie AF; Revsin B; Kalra V; Phillips P; Bogin E; Higashi T; Murti CR; Cavari BZ; Marquez E
    Biochem Soc Symp; 1970; 29():119-43. PubMed ID: 4945313
    [No Abstract]   [Full Text] [Related]  

  • 17. [Utilization of malate by various Mycobacteria. Malate-vitamin K 1 reductase].
    Andrejew A; Orfanelli MT; Desbordes J
    C R Acad Hebd Seances Acad Sci D; 1972 Feb; 274(6):943-6. PubMed ID: 4622884
    [No Abstract]   [Full Text] [Related]  

  • 18. [Similarity of certain aspects of the action of 2 groups of subsituted p-quinones--vitamins E and K--in the animal organism].
    Matusis II; Ulasevich II
    Usp Sovrem Biol; 1967; 63(3):415-28. PubMed ID: 4245060
    [No Abstract]   [Full Text] [Related]  

  • 19. Possible role for vitamin K in electron transport.
    WEBER MM; BRODIE AF; MERSELIS JE
    Science; 1958 Oct; 128(3329):896-8. PubMed ID: 13592270
    [No Abstract]   [Full Text] [Related]  

  • 20. Terminal electron transport system of M. lepraemurium.
    Mori T; Kosaka K; Domae K
    Int J Lepr Other Mycobact Dis; 1971; 39(4):813-28. PubMed ID: 5170471
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.