These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7353919)

  • 21. Robust regression of enzyme kinetic data.
    Cornish-Bowden A; Endrenyi L
    Biochem J; 1986 Feb; 234(1):21-9. PubMed ID: 3707541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L-phenylalanine ammonia-lyase. II. Mechanism and kinetic properties of the enzyme from potato tubers.
    Havir EA; Hanson KR
    Biochemistry; 1968 May; 7(5):1904-14. PubMed ID: 5655435
    [No Abstract]   [Full Text] [Related]  

  • 23. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis.
    Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP
    Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental designs for estimating the kinetic parameters for enzyme-catalysed reactions.
    Duggleby RG
    J Theor Biol; 1979 Dec; 81(4):671-84. PubMed ID: 537393
    [No Abstract]   [Full Text] [Related]  

  • 25. A small computer system for the routine analysis of enzyme kinetic mechanisms.
    Bates DJ; Frieden C
    Comput Biomed Res; 1973 Oct; 6(5):474-86. PubMed ID: 4747108
    [No Abstract]   [Full Text] [Related]  

  • 26. Changes in binding of hydrogen ions in enzyme-catalyzed reactions.
    Alberty RA
    Biophys Chem; 2007 Feb; 125(2-3):328-33. PubMed ID: 17011697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Location of critical points in the reaction velocity/concentration relationships predicted by the exponential model for a two substrate regulatory enzyme.
    Ainsworth S; Kinderlerer J
    Int J Biomed Comput; 1984; 15(4):249-58. PubMed ID: 6547926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exponential model for a two-ligand, regulatory enzyme. Part 3: Performance tests of INDEXP computer programs for determination of model constants from initial velocity data. 2. Experimental data.
    Ainsworth S; Kinderlerer J; Gregory RB
    Int J Biomed Comput; 1981 Jul; 12(4):335-48. PubMed ID: 7021430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exponential model for a two-ligand, regulatory enzyme. Part 1: computer programs for the determination of the model constants from initial velocity data.
    Kinderlerer J; Ainsworth S; Gregory RB
    Int J Biomed Comput; 1981 Jul; 12(4):291-313. PubMed ID: 7263099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple unfolded states of UDP-galactose 4-epimerase from yeast Kluyveromyces fragilis. Involvement of proline cis-trans isomerization in reactivation.
    Dutta S; Maity NR; Bhattacharyya D
    Biochim Biophys Acta; 1997 Dec; 1343(2):251-62. PubMed ID: 9434116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic study of an enzyme-catalysed reaction in the presence of novel irreversible-type inhibitors that react with the product of enzymatic catalysis.
    Navarro-Lozano MJ; Valero E; Varon R; Garcia-Carmona F
    Bull Math Biol; 1995 Jan; 57(1):157-68. PubMed ID: 7833851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two different ways that hydrogen ions are involved in the thermodynamics and rapid-equilibrium kinetics of the enzymatic catalysis of S=P and S+H2O=P.
    Alberty RA
    Biophys Chem; 2007 Jul; 128(2-3):204-9. PubMed ID: 17490804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations.
    Shim JH; Wall M; Benkovic SJ; Díaz N; Suárez D; Merz KM
    J Am Chem Soc; 2001 May; 123(20):4687-96. PubMed ID: 11457277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isoelectric focusing in immobilized pH gradients: generation of extended pH intervals.
    Dossi G; Celentano F; Gianazza E; Righetti PG
    J Biochem Biophys Methods; 1983 Feb; 7(2):123-42. PubMed ID: 6833709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH-dependence of catalytic constants of the enzyme reaction--some remarks.
    Barth A; Heins J; Schneeweiss B
    Pharmazie; 1981; 36(2):120-3. PubMed ID: 7232482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A method for conforming the pH dependence of the michaelis parameters of nonallosteric enzymes to four kinetic schemes.
    Vega-Catalan FJ
    Comput Biomed Res; 1990 Oct; 23(5):447-54. PubMed ID: 2225789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pH-activity curves for enzyme-catalysed reactions in which the hydron is a product or reactant.
    Dixon HB; Brocklehurst K; Tipton KF
    Biochem J; 1987 Dec; 248(2):573-8. PubMed ID: 2829833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple procedure for purifying the major chloroplast fructose-1,6-bisphosphatase from spinach (Spinacia oleracea) and characterization of its stimulation by sub-femtomolar mercuric ions.
    Ashton AR
    Arch Biochem Biophys; 1998 Sep; 357(2):207-24. PubMed ID: 9735161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. UDPglucose 4-epimerase from Saccharomyces fragilis: asymmetry in allosteric properties leads to unidirectional catalysis.
    Ray M; Bhaduri A
    Biochem Biophys Res Commun; 1978 Nov; 85(1):242-8. PubMed ID: 743277
    [No Abstract]   [Full Text] [Related]  

  • 40. The computation of hyperbolic dependences in enzyme kinetics.
    Airas RK
    Biochem J; 1976 May; 155(2):449-52. PubMed ID: 938492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.