These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7354075)

  • 1. Methylglyoxal formation in rat liver cells.
    Sato J; Wang YM; van Eys J
    J Biol Chem; 1980 Mar; 255(5):2046-50. PubMed ID: 7354075
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism for the formation of methylglyoxal from triosephosphates.
    Richard JP
    Biochem Soc Trans; 1993 May; 21(2):549-53. PubMed ID: 8359530
    [No Abstract]   [Full Text] [Related]  

  • 3. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal.
    Phillips SA; Thornalley PJ
    Eur J Biochem; 1993 Feb; 212(1):101-5. PubMed ID: 8444148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conversion of dihydroxyacetone phosphate to methylglyoxal and inorganic phosphate by methylglyoxal synthase.
    Yuan PM; Gracy RW
    Arch Biochem Biophys; 1977 Sep; 183(1):1-6. PubMed ID: 334078
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the interaction of fructose 1,6-P2 aldolase with methylglyoxal.
    Leoncini G; Ronchi S; Maresca M; Bonsignore A
    Ital J Biochem; 1980; 29(4):289-99. PubMed ID: 7216719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of methylglyoxal synthase from goat liver.
    Ray S; Ray M
    J Biol Chem; 1981 Jun; 256(12):6230-3. PubMed ID: 7240200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new intermediate of the aldolase reaction, the pyruvaldehyde-aldolase-orthophosphate complex.
    Grazi E; Trombetta G
    Biochem J; 1978 Nov; 175(2):361-5. PubMed ID: 743201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can the beneficial effects of methionine restriction in rats be explained in part by decreased methylglyoxal generation resulting from suppressed carbohydrate metabolism?
    Hipkiss AR
    Biogerontology; 2012 Dec; 13(6):633-6. PubMed ID: 23001575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour.
    Weber J; Kayser A; Rinas U
    Microbiology (Reading); 2005 Mar; 151(Pt 3):707-716. PubMed ID: 15758217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylglyoxal-catabolizing enzymes of Leishmania donovani promastigotes.
    Ghoshal K; Banerjee AB; Ray S
    Mol Biochem Parasitol; 1989 Jun; 35(1):21-9. PubMed ID: 2668758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Methylglyoxal: metabolism and biological activity].
    Alekseev VS
    Ukr Biokhim Zh (1978); 1987; 59(6):88-94. PubMed ID: 3324413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gluconeogenesis from methylglyoxal in isolated murine hepatocytes. Does an alternative pathway exist in which pyruvate is not an intermediate?
    Riba P; Garzó T; Mandl J; Kalapos MP
    Int J Biochem; 1992 Nov; 24(11):1721-4. PubMed ID: 1451907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis and degradation of methylglyoxal in animals.
    Ohmori S; Mori M; Shiraha K; Kawase M
    Prog Clin Biol Res; 1989; 290():397-412. PubMed ID: 2498903
    [No Abstract]   [Full Text] [Related]  

  • 14. Glucose formation from methylglyoxal in hepatocytes from streptozotocin-induced diabetic mice: the effect of insulin.
    Kalapos MP; Riba P; Garzo T; Mandl J
    Experientia; 1996 Aug; 52(8):827-30. PubMed ID: 8774756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the Enzymatic Synthesis of 4-(Hydroxymethyl)-2- furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate Catalyzed by 4-HFC-P Synthase.
    Wang Y; Jones MK; Xu H; Ray WK; White RH
    Biochemistry; 2015 May; 54(19):2997-3008. PubMed ID: 25905665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylglyoxal synthetase, enol-pyruvaldehyde, glutathione and the glyoxalase system.
    Rose IA; Nowick JS
    J Am Chem Soc; 2002 Nov; 124(44):13047-52. PubMed ID: 12405831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes.
    Takagi D; Inoue H; Odawara M; Shimakawa G; Miyake C
    Plant Cell Physiol; 2014 Feb; 55(2):333-40. PubMed ID: 24406631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aldolase-catalyzed diketone phosphate formation from oxoaldehydes. NMR studies and metabolic significance.
    Rae C; Bubb WA; Kuchel PW
    J Biol Chem; 1992 May; 267(14):9713-7. PubMed ID: 1577806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of glucagon on the metabolism of xylitol and dihydroxyacetone in the isolated perfused rat liver.
    Blair JB; Cook DE; Lardy HA
    J Biol Chem; 1973 May; 248(10):3601-7. PubMed ID: 4349871
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance.
    Richard JP
    Biochemistry; 1991 May; 30(18):4581-5. PubMed ID: 2021650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.