These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 7354863)

  • 1. Sequence of a ribosomal RNA gene intron from Tetrahymena.
    Wild MA; Sommer R
    Nature; 1980 Feb; 283(5748):693-4. PubMed ID: 7354863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an authentic intermediate in the self-splicing process of ribosomal precursor RNA in macronuclei of Tetrahymena thermophila.
    Kister KP; Eckert WA
    Nucleic Acids Res; 1987 Mar; 15(5):1905-20. PubMed ID: 3645543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing.
    Inoue T; Sullivan FX; Cech TR
    J Mol Biol; 1986 May; 189(1):143-65. PubMed ID: 2431151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-splicing of yeast mitochondrial ribosomal and messenger RNA precursors.
    van der Horst G; Tabak HF
    Cell; 1985 Apr; 40(4):759-66. PubMed ID: 2580635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor.
    Burke JM; Irvine KD; Kaneko KJ; Kerker BJ; Oettgen AB; Tierney WM; Williamson CL; Zaug AJ; Cech TR
    Cell; 1986 Apr; 45(2):167-76. PubMed ID: 2421916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Close relationship between certain nuclear and mitochondrial introns. Implications for the mechanism of RNA splicing.
    Waring RB; Scazzocchio C; Brown TA; Davies RW
    J Mol Biol; 1983 Jul; 167(3):595-605. PubMed ID: 6876158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-splicing RNA and an RNA enzyme in Tetrahymena.
    Zaug AJ; Cech TR
    J Protozool; 1987 Nov; 34(4):416-7. PubMed ID: 3323479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intervening sequence in the 26S rRNA coding region of T. thermophila is transcribed within the largest stable precursor for rRNA.
    Din N; Engberg J; Kaffenberger W; Eckert WA
    Cell; 1979 Oct; 18(2):525-32. PubMed ID: 498282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic evidence for the acquisition of ribosomal RNA introns subsequent to the divergence of some of the major Tetrahymena groups.
    Sogin ML; Ingold A; Karlok M; Nielsen H; Engberg J
    EMBO J; 1986 Dec; 5(13):3625-30. PubMed ID: 3830129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of recognition of the 5' splice site in self-splicing group I introns.
    Garriga G; Lambowitz AM; Inoue T; Cech TR
    Nature; 1986 Jul 3-9; 322(6074):86-9. PubMed ID: 3636598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron.
    Doudna JA; Cormack BP; Szostak JW
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7402-6. PubMed ID: 2678103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence of a ribosomal RNA gene intron from slime mold Physarum polycephalum.
    Nomiyama H; Sakaki Y; Takagi Y
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1376-80. PubMed ID: 6262791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor.
    Bass BL; Cech TR
    Biochemistry; 1986 Aug; 25(16):4473-7. PubMed ID: 3639741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA.
    Woodson SA; Cech TR
    Biochemistry; 1991 Feb; 30(8):2042-50. PubMed ID: 1998665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ribosomal RNA genes of Tetrahymena: structure and function.
    Engberg J
    Eur J Cell Biol; 1985 Jan; 36(1):133-51. PubMed ID: 3884336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intervening sequence of the ribosomal RNA gene is highly conserved between two Tetrahymena species.
    Kan NC; Gall JG
    Nucleic Acids Res; 1982 May; 10(9):2809-22. PubMed ID: 6285310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing of large ribosomal precursor RNA and processing of intron RNA in yeast mitochondria.
    Tabak HF; Van der Horst G; Osinga KA; Arnberg AC
    Cell; 1984 Dec; 39(3 Pt 2):623-9. PubMed ID: 6210151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the origin of RNA splicing and introns.
    Sharp PA
    Cell; 1985 Sep; 42(2):397-400. PubMed ID: 2411416
    [No Abstract]   [Full Text] [Related]  

  • 20. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast.
    Jackson SA; Koduvayur S; Woodson SA
    RNA; 2006 Dec; 12(12):2149-59. PubMed ID: 17135489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.