These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 7354863)

  • 21. Complex endonucleolytic cleavage pattern during early events in the processing of pre-rRNA in the lower eukaryote, Tetrahymena thermophila.
    Kister KP; Müller B; Eckert WA
    Nucleic Acids Res; 1983 Jun; 11(11):3487-502. PubMed ID: 6304633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic activity of the conserved core of a group I self-splicing intron.
    Szostak JW
    Nature; 1986 Jul 3-9; 322(6074):83-6. PubMed ID: 3014350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences.
    Cech TR; Tanner NK; Tinoco I; Weir BR; Zuker M; Perlman PS
    Proc Natl Acad Sci U S A; 1983 Jul; 80(13):3903-7. PubMed ID: 6306649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.
    Suh ER; Waring RB
    Mol Cell Biol; 1990 Jun; 10(6):2960-5. PubMed ID: 2342465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sites of circularization of the Tetrahymena rRNA IVS are determined by sequence and influenced by position and secondary structure.
    Been MD; Cech TR
    Nucleic Acids Res; 1985 Dec; 13(23):8389-408. PubMed ID: 4080546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotide sequence of the 5'-terminal coding region for pre-rRNA and mature 17S rRNA in Tetrahymena thermophila rDNA.
    Engberg J; Din N; Saiga H; Higashinakagawa T
    Nucleic Acids Res; 1984 Jan; 12(2):959-72. PubMed ID: 6320127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The intervening sequence excised from the ribosomal RNA precursor of Tetrahymena contains a 5-terminal guanosine residue not encoded by the DNA.
    Zaug AJ; Cech TR
    Nucleic Acids Res; 1982 May; 10(9):2823-38. PubMed ID: 7099968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reverse self-splicing of the tetrahymena group I intron: implication for the directionality of splicing and for intron transposition.
    Woodson SA; Cech TR
    Cell; 1989 Apr; 57(2):335-45. PubMed ID: 2702692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viroids and virusoids are related to group I introns.
    Dinter-Gottlieb G
    Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6250-4. PubMed ID: 3462692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intron mutations affect splicing of Saccharomyces cerevisiae SUP53 precursor tRNA.
    Strobel MC; Abelson J
    Mol Cell Biol; 1986 Jul; 6(7):2674-83. PubMed ID: 3537725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence.
    Cech TR; Zaug AJ; Grabowski PJ
    Cell; 1981 Dec; 27(3 Pt 2):487-96. PubMed ID: 6101203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA.
    Bass BL; Cech TR
    Nature; 1984 Apr 26-May 2; 308(5962):820-6. PubMed ID: 6562377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of phosphate groups important to self-splicing of the Tetrahymena rRNA intron as determined by phosphorothioate substitution.
    Waring RB
    Nucleic Acids Res; 1989 Dec; 17(24):10281-93. PubMed ID: 2690016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence requirements for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA.
    Price JV; Kieft GL; Kent JR; Sievers EL; Cech TR
    Nucleic Acids Res; 1985 Mar; 13(6):1871-89. PubMed ID: 4000946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An intervening sequence in an unusual histone H1 gene of Tetrahymena thermophila.
    Wu M; Allis CD; Richman R; Cook RG; Gorovsky MA
    Proc Natl Acad Sci U S A; 1986 Nov; 83(22):8674-8. PubMed ID: 3464976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of a group I intron self-splicing reaction with an activator RNA.
    van der Horst G; Christian A; Inoue T
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):184-8. PubMed ID: 1986364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-splicing of the Tetrahymena pre-rRNA is decreased by misfolding during transcription.
    Emerick VL; Woodson SA
    Biochemistry; 1993 Dec; 32(50):14062-7. PubMed ID: 8268185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo.
    Roman J; Woodson SA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2134-9. PubMed ID: 9482851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA.
    Zhang F; Ramsay ES; Woodson SA
    RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.