These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7355274)

  • 1. Calcium transients during excitation-contraction coupling in mammalian heart: aequorin signals of canine Purkinje fibers.
    Wier WG
    Science; 1980 Mar; 207(4435):1085-7. PubMed ID: 7355274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ryanodine as a tool to determine the contributions of calcium entry and calcium release to the calcium transient and contraction of cardiac Purkinje fibers.
    Marban E; Wier WG
    Circ Res; 1985 Jan; 56(1):133-8. PubMed ID: 2578335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular [Ca2+] transients in voltage clamped cardiac Purkinje fibers.
    Wier WG; Isenberg G
    Pflugers Arch; 1982 Jan; 392(3):284-90. PubMed ID: 7070960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction.
    Wier WG; Hess P
    J Gen Physiol; 1984 Mar; 83(3):395-415. PubMed ID: 6325588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation-contraction coupling in cardiac Purkinje fibers. Effects of caffeine on the intracellular [Ca2+] transient, membrane currents, and contraction.
    Hess P; Wier WG
    J Gen Physiol; 1984 Mar; 83(3):417-33. PubMed ID: 6325589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of aequorin signals in Purkinje fibers.
    Wier WG; Kort AA; Stern MD; Lakatta EG; Marban E
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7367-71. PubMed ID: 6580652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell.
    Fabiato A
    J Gen Physiol; 1985 Feb; 85(2):189-246. PubMed ID: 3981128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell.
    Fabiato A
    J Gen Physiol; 1985 Feb; 85(2):247-89. PubMed ID: 2580043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow inactivation of calcium channels in the cardiac Purkinje fiber.
    Kass RS; Scheuer T
    J Mol Cell Cardiol; 1982 Oct; 14(10):615-8. PubMed ID: 6296410
    [No Abstract]   [Full Text] [Related]  

  • 10. Calcium ions and membrane current changes induced by digitals in cardiac Purkinje fibers.
    Tsien RW; Kass RS; Weingart R
    Ann N Y Acad Sci; 1978 Apr; 307():483-90. PubMed ID: 360946
    [No Abstract]   [Full Text] [Related]  

  • 11. The relationship among intracellular sodium activity, calcium, and strophanthidin inotropy in canine cardiac Purkinje fibers.
    Vassalle M; Lee CO
    J Gen Physiol; 1984 Feb; 83(2):287-307. PubMed ID: 6325584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of calcium ionophores to determine the effects of intracellular calcium on the action potential of canine cardiac Purkinje fibers.
    Gelles JM
    Circ Res; 1977 Jul; 41(1):94-9. PubMed ID: 324657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuations in intracellular calcium concentration and their effect on tonic tension in canine cardiac Purkinje fibres.
    Kort AA; Lakatta EG; Marban E; Stern MD; Wier WG
    J Physiol; 1985 Oct; 367():291-308. PubMed ID: 4057100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ryanodine on intracellular Ca2+ transients in mammalian cardiac muscle.
    Wier WG; Yue DT; Marban E
    Fed Proc; 1985 Dec; 44(15):2989-93. PubMed ID: 4065357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of intracellular calcium during the development and relaxation of tonic tension in sheep Purkinje fibres.
    Eisner DA; Valdeolmillos M
    J Physiol; 1986 Jun; 375():269-81. PubMed ID: 2432223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is potassium conductance of cardiac Purkinje fibres controlled by (Ca2+)?
    Isnberg G
    Nature; 1975 Jan; 253(5489):273-4. PubMed ID: 1113845
    [No Abstract]   [Full Text] [Related]  

  • 17. Modulation of intracellular Na+ activity and cardiac force by norepinephrine and Ca2+.
    Lee CO; Vassalle M
    Am J Physiol; 1983 Jan; 244(1):C110-4. PubMed ID: 6295176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell.
    Fabiato A
    J Gen Physiol; 1985 Feb; 85(2):291-320. PubMed ID: 2580044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transients in asymmetrically activated skeletal muscle fibers.
    Trube G; Lopez JR; Taylor SR
    Biophys J; 1981 Dec; 36(3):491-507. PubMed ID: 6976801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of potassium and sodium-calcium exchange currents in the action potential durations of normal Purkinje fibres and Purkinje fibres surviving infarction.
    Bril A; Man RY
    Cardiovasc Res; 1989 May; 23(5):410-6. PubMed ID: 2482131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.