These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 7355445)

  • 21. An MRI-based method to align the compressive loading axis for human cadaveric knees.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2007 Dec; 129(6):855-62. PubMed ID: 18067389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calculation of tibial loading using strain gauges.
    Funk JR; Crandall JR
    Biomed Sci Instrum; 2006; 42():160-5. PubMed ID: 16817602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Tibial shaft fractures. Anatomical, biomechanical and pathophysiological aspects].
    Haas N; Gotzen L; Otte D
    Orthopade; 1984 Sep; 13(4):250-5. PubMed ID: 6493776
    [No Abstract]   [Full Text] [Related]  

  • 24. [Tolerance to impact force distending the tissues of the neck as applied to an assessment of the conditions of highway accidents].
    Kozlovskiĭ AP; Pyrlina NP; Lebedev VN; Zlivanov VA
    Sud Med Ekspert; 1979; 22(1):25-9. PubMed ID: 419544
    [No Abstract]   [Full Text] [Related]  

  • 25. Effects of vehicle bumper height and impact velocity on type of lower extremity injury in vehicle-pedestrian accidents.
    Matsui Y
    Accid Anal Prev; 2005 Jul; 37(4):633-40. PubMed ID: 15949454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tibial plateau fracture following gracilis-semitendinosus anterior cruciate ligament reconstruction: The tibial tunnel stress-riser.
    Sundaram RO; Cohen D; Barton-Hanson N
    Knee; 2006 Jun; 13(3):238-40. PubMed ID: 16242333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of pedestrian subsystem test method using legform and upper legform impactors for assessment of high-bumper vehicle aggressiveness.
    Matsui Y
    Traffic Inj Prev; 2004 Mar; 5(1):76-86. PubMed ID: 14754678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Mechanical stress on the fibula of primates].
    Preuschoft H
    Gegenbaurs Morphol Jahrb; 1972; 117(2):211-6. PubMed ID: 5022468
    [No Abstract]   [Full Text] [Related]  

  • 29. Experimental tibial-plateau fractures. Studies of the mechanism and a classification.
    Kennedy JC; Bailey WH
    J Bone Joint Surg Am; 1968 Dec; 50(8):1522-34. PubMed ID: 5722848
    [No Abstract]   [Full Text] [Related]  

  • 30. Factors influencing interlocking screw failure in unreamed small diameter nails--a biomechanical study using a distal tibia fracture model.
    Weninger P; Schueller M; Jamek M; Stanzl-Tschegg S; Redl H; Tschegg EK
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):379-84. PubMed ID: 19231049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site, type, and local mechanism of tibial shaft fracture in drivers in frontal automobile crashes.
    Ivarsson BJ; Manaswi A; Genovese D; Crandall JR; Hurwitz SR; Burke C; Fakhry S
    Forensic Sci Int; 2008 Mar; 175(2-3):186-92. PubMed ID: 17826018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Density distribution and direction of bending strength in cross- sections of the tibial head in humans].
    Sha N
    Kobe J Med Sci; 1990 Aug; 36(3-4):115-25. PubMed ID: 2096261
    [No Abstract]   [Full Text] [Related]  

  • 33. Susceptibility of aging human bone to mixed-mode fracture increases bone fragility.
    George WT; Vashishth D
    Bone; 2006 Jan; 38(1):105-11. PubMed ID: 16182625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Direct measurement of bone mechanical strength].
    Fernández RC; Díez Pérez A
    Reumatol Clin; 2011; 7(3):154-5. PubMed ID: 21794805
    [No Abstract]   [Full Text] [Related]  

  • 35. Interfragmentary movement in diaphyseal tibia fractures fixed with locked intramedullary nails.
    Augat P; Penzkofer R; Nolte A; Maier M; Panzer S; v Oldenburg G; Pueschl K; Simon U; Bühren V
    J Orthop Trauma; 2008 Jan; 22(1):30-6. PubMed ID: 18176162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical stiffness and morphology of selected human organs from the standpoint of passive safety. Preliminary report.
    Stingl J; Báca V; Kachlík D; Rejmontová J
    Sb Lek; 2001; 102(2):241-7. PubMed ID: 12092114
    [No Abstract]   [Full Text] [Related]  

  • 37. Predicting regional variations in trabecular bone mechanical properties within the human proximal tibia using MR imaging.
    Lancianese SL; Kwok E; Beck CA; Lerner AL
    Bone; 2008 Dec; 43(6):1039-46. PubMed ID: 18755303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur.
    Vainionpää A; Korpelainen R; Sievänen H; Vihriälä E; Leppäluoto J; Jämsä T
    Bone; 2007 Mar; 40(3):604-11. PubMed ID: 17140871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Material properties of interstitial lamellae reflect local strain environments.
    Goodwin KJ; Sharkey NA
    J Orthop Res; 2002 May; 20(3):600-6. PubMed ID: 12038637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.