These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 7356484)

  • 1. Tryptic cleavage of a peptide at modified aspartic acid.
    DeBons FE; Loudon GM
    Biochem Biophys Res Commun; 1980 Jan; 92(2):606-9. PubMed ID: 7356484
    [No Abstract]   [Full Text] [Related]  

  • 2. Modification of aspartic acid residues to induce trypsin cleavage.
    Wang TT; Young NM
    Anal Biochem; 1978 Dec; 91(2):696-9. PubMed ID: 9762157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into Trypsin Miscleavage: Comparison of Kinetic Constants of Problematic Peptide Sequences.
    Šlechtová T; Gilar M; Kalíková K; Tesařová E
    Anal Chem; 2015 Aug; 87(15):7636-43. PubMed ID: 26158323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleavage of aspartyl beta-phenacyl esters by selenophenol under neutral conditions.
    Morell JL; Gaudreau P; Gross E
    Int J Pept Protein Res; 1982 May; 19(5):487-9. PubMed ID: 7118418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and synthesis of altered peptides modulating T cell recognition of a synthetic peptide antigen.
    Ede NJ; Chen W; McCluskey J; Jackson DC; Purcell AW
    Biomed Pept Proteins Nucleic Acids; 1995; 1(4):231-4. PubMed ID: 9346837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective tryptic cleavage at the tethered ligand site of the amino terminal domain of proteinase-activated receptor-2 in intact cells.
    Al-Ani B; Hollenberg MD
    J Pharmacol Exp Ther; 2003 Mar; 304(3):1120-8. PubMed ID: 12604689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of trypsin investigated by using a genetic selection.
    Evnin LB; Vásquez JR; Craik CS
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6659-63. PubMed ID: 2204062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis of labeled carbamyl- aspartic acid.
    Kidder GW; Nolan LL
    Biochem Biophys Res Commun; 1975 Jul; 65(1):420-6. PubMed ID: 1147998
    [No Abstract]   [Full Text] [Related]  

  • 9. Asymmetric Mannich-type reactions for the synthesis of aspartic acid derivatives from chiral N-tert-butanesulfinylimino esters.
    Jacobsen MF; Skrydstrup T
    J Org Chem; 2003 Sep; 68(18):7112-4. PubMed ID: 12946161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of beta-aspartyl and gamma-glutamyl oligopeptides in human urine.
    BUCHANAN DL; HALEY EE; MARKIW RT
    Biochemistry; 1962 Jul; 1():612-20. PubMed ID: 13874234
    [No Abstract]   [Full Text] [Related]  

  • 11. Dehydroaspartic acid derivatives.
    Kolasa T; Gross E
    Int J Pept Protein Res; 1982 Sep; 20(3):259-66. PubMed ID: 7129759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activating a zymogen without proteolytic processing: mutation of Lys15 and Asn194 activates trypsinogen.
    Pasternak A; Liu X; Lin TY; Hedstrom L
    Biochemistry; 1998 Nov; 37(46):16201-10. PubMed ID: 9819212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity profiling of human trypsin-isoenzymes.
    Schilling O; Biniossek ML; Mayer B; Elsässer B; Brandstetter H; Goettig P; Stenman UH; Koistinen H
    Biol Chem; 2018 Sep; 399(9):997-1007. PubMed ID: 29883318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The beta-phenacyl ester as a temporary protecting group to minimize cyclic imide formation during subsequent treatment of aspartyl peptides with HF.
    Yang CC; Merrifield RB
    J Org Chem; 1976 Mar; 41(6):1032-41. PubMed ID: 1255285
    [No Abstract]   [Full Text] [Related]  

  • 16. Detection of hydrolytic activity of trypsin with a fluorescence-chymotryptic peptide on a TLC plate.
    Uchikoba T; Fukumoto S; Itakura T; Okubo M; Tomokiyo K; Arima K; Yonezawa H
    Biosci Biotechnol Biochem; 2004 Jan; 68(1):222-5. PubMed ID: 14745188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [COMPARATIVE KINETIC STUDY OF THE TRYPTIC HYDROLYSIS OF LACTOGLOBULINS A AND B].
    MONNOT M
    Biochim Biophys Acta; 1964 Oct; 93():31-9. PubMed ID: 14249164
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of carboxyl residues in pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 that participate in catalysis and substrate binding.
    Ito M; Narutaki S; Uchida K; Oda K
    J Biochem; 1999 Jan; 125(1):210-6. PubMed ID: 9880819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of an amino acid analogue to incorporate p-aminobenzyl-EDTA in peptides.
    Song AI; Rana TM
    Bioconjug Chem; 1997; 8(2):249-52. PubMed ID: 9095368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.