These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7356643)

  • 1. Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation.
    Saks VA; Kupriyanov VV; Elizarova GV; Jacobus WE
    J Biol Chem; 1980 Jan; 255(2):755-63. PubMed ID: 7356643
    [No Abstract]   [Full Text] [Related]  

  • 2. Creatine kinase of heart mitochondria. Control of oxidative phosphorylation by the extramitochondrial concentrations of creatine and phosphocreatine.
    Jacobus WE; Diffley DM
    J Biol Chem; 1986 Dec; 261(35):16579-83. PubMed ID: 3782135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation.
    Kuznetsov AV; Khuchua ZA; Vassil'eva EV; Medved'eva NV; Saks VA
    Arch Biochem Biophys; 1989 Jan; 268(1):176-90. PubMed ID: 2912374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation.
    Saks VA; Kuznetsov AV; Kupriyanov VV; Miceli MV; Jacobus WE
    J Biol Chem; 1985 Jun; 260(12):7757-64. PubMed ID: 3997893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of creatine kinase isoenzymes with beef heart mitochondrial membrane: a model for association of mitochondrial and cytoplasmic isoenzymes with inner membrane.
    Iyengar MR; Iyengar CL
    Biochemistry; 1980 May; 19(10):2176-82. PubMed ID: 7378355
    [No Abstract]   [Full Text] [Related]  

  • 6. A 'hexokinase effect' in the inhibition of oxidative phosphorylation in heart muscle mitochondria by adriamycin.
    Muhammed H; Ramasarma T; Kurup CK
    Biochem Biophys Res Commun; 1982 Apr; 105(4):1440-5. PubMed ID: 7103967
    [No Abstract]   [Full Text] [Related]  

  • 7. Artefacts in the estimation of ADP analogs as phosphate acceptors in mitochondrial oxidative phosphorylation.
    Petrescu I; Lascu I; Porumb H; Bàrzu O
    FEBS Lett; 1981 Mar; 125(1):111-4. PubMed ID: 7227536
    [No Abstract]   [Full Text] [Related]  

  • 8. Novel mitochondrial creatine transport activity. Implications for intracellular creatine compartments and bioenergetics.
    Walzel B; Speer O; Zanolla E; Eriksson O; Bernardi P; Wallimann T
    J Biol Chem; 2002 Oct; 277(40):37503-11. PubMed ID: 12145274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of heart mitochondrial oxygen consumption by creatine kinase: the importance of enzyme localization.
    Gellerich F; Saks VA
    Biochem Biophys Res Commun; 1982 Apr; 105(4):1473-81. PubMed ID: 7103968
    [No Abstract]   [Full Text] [Related]  

  • 11. Does oxidative phosphorylation increase the rate of creatine phosphate synthesis in heart mitochondria or not?
    Saks VA; Seppet EK; Smirnov VN
    J Mol Cell Cardiol; 1979 Dec; 11(12):1265-73. PubMed ID: 529296
    [No Abstract]   [Full Text] [Related]  

  • 12. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation].
    Kuznetsov AV; Saks VA; Kupriianov VV
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):7-14. PubMed ID: 4005057
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria.
    Aliev MK; Saks VA
    Biochim Biophys Acta; 1993 Jul; 1143(3):291-300. PubMed ID: 8329438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic ethanol intoxication on oxidative phosphorylation in rat liver submitochondrial particles.
    Thayer WS; Rubin E
    J Biol Chem; 1979 Aug; 254(16):7717-23. PubMed ID: 572826
    [No Abstract]   [Full Text] [Related]  

  • 15. Interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation and creatine kinase.
    BeltrandelRio H; Wilson JE
    Arch Biochem Biophys; 1992 Nov; 299(1):116-24. PubMed ID: 1444444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport.
    Jacobus WE; Lehninger AL
    J Biol Chem; 1973 Jul; 248(13):4803-10. PubMed ID: 4718746
    [No Abstract]   [Full Text] [Related]  

  • 17. Phloretin - an uncoupler and an inhibitor of mitochondrial oxidative phosphorylation.
    De Jonge PC; Wieringa T; Van Putten JP; Krans HM; Van Dam K
    Biochim Biophys Acta; 1983 Jan; 722(1):219-25. PubMed ID: 6130789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of beta-hydroxybutyrate oxidation in rat liver mitochondria or submitochondrial particles by monocarboxylates transport inhibitors.
    Latruffe N; Gaudemer Y
    Biochimie; 1978 Sep; 60(6-7):677-80. PubMed ID: 719045
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of mitochondrial radical formation on energy-linked respiration.
    Nohl H; Breuninger V; Hegner D
    Eur J Biochem; 1978 Oct; 90(2):385-90. PubMed ID: 710436
    [No Abstract]   [Full Text] [Related]  

  • 20. Transport of energy in muscle: the phosphorylcreatine shuttle.
    Bessman SP; Geiger PJ
    Science; 1981 Jan; 211(4481):448-52. PubMed ID: 6450446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.