BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7356649)

  • 21. Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens.
    Kaufmann F; Lovley DR
    J Bacteriol; 2001 Aug; 183(15):4468-76. PubMed ID: 11443080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Kinetics of the NADH regenerating system using bacterial formate dehydrogenase].
    Egorov AM; Osipov AP; Pozharskiĭ SB; Iavarkovskaia LL
    Biokhimiia; 1981 Feb; 46(2):361-7. PubMed ID: 7248390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Two ways of formate oxidation in methylotrophic bacteria].
    Rodionov IuV; Zakharova EV
    Biokhimiia; 1980 May; 45(5):854-63. PubMed ID: 6246983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii.
    Jones JB; Dilworth GL; Stadtman TC
    Arch Biochem Biophys; 1979 Jul; 195(2):255-60. PubMed ID: 475390
    [No Abstract]   [Full Text] [Related]  

  • 25. Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8.
    Fogal S; Beneventi E; Cendron L; Bergantino E
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9541-54. PubMed ID: 26104866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
    Costa KC; Wong PM; Wang T; Lie TJ; Dodsworth JA; Swanson I; Burn JA; Hackett M; Leigh JA
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11050-5. PubMed ID: 20534465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration.
    Jiang HW; Chen Q; Pan J; Zheng GW; Xu JH
    Appl Biochem Biotechnol; 2020 Oct; 192(2):530-543. PubMed ID: 32405732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of nit-1 nitrate reductase by W-formate dehydrogenase.
    Deaton JC; Solomon EI; Durfor CN; Wetherbee PJ; Burgess BK; Jacobs DB
    Biochem Biophys Res Commun; 1984 Jun; 121(3):1042-7. PubMed ID: 6234890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composition of the coenzyme F420-dependent formate dehydrogenase from Methanobacterium formicicum.
    Schauer NL; Ferry JG
    J Bacteriol; 1986 Feb; 165(2):405-11. PubMed ID: 3944055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of molybdopterin guanine dinucleotide in formate dehydrogenase from Methanobacterium formicicum.
    Johnson JL; Bastian NR; Schauer NL; Ferry JG; Rajagopalan KV
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):213-6. PubMed ID: 2037231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation, characterization, and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b.
    Chen YP; Yoch DC
    J Bacteriol; 1989 Sep; 171(9):5012-6. PubMed ID: 2768195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki.
    Yagi T
    Biochim Biophys Acta; 1979 Oct; 548(1):96-105. PubMed ID: 226135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NAD-dependent formate dehydrogenase from methylotrophic bacterium, strain 1. Purification and characterization.
    Egorov AM; Avilova TV; Dikov MM; Popov VO; Rodionov YV; Berezin IV
    Eur J Biochem; 1979 Sep; 99(3):569-76. PubMed ID: 227687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential redox and electron-transfer properties of purified yeast, plant and human NADPH-cytochrome P-450 reductases highly modulate cytochrome P-450 activities.
    Louërat-Oriou B; Perret A; Pompon D
    Eur J Biochem; 1998 Dec; 258(3):1040-9. PubMed ID: 9990323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic isotope effect and the presteady-state kinetics of the reaction catalyzed by the bacterial formate dehydrogenase.
    Tishkov VI; Galkin AG; Egorov AM
    Biochimie; 1989 Apr; 71(4):551-7. PubMed ID: 2503060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation of dihydronicotinamides by flavin in enzyme and model reactions. Old yellow enzyme and lumiflavin.
    Porter DJ; Bright HJ
    J Biol Chem; 1980 Aug; 255(15):7362-70. PubMed ID: 6446565
    [No Abstract]   [Full Text] [Related]  

  • 38. NAD-linked formate dehydrogenase from methanol-grown Pichia pastoris NRRL-Y-7556.
    Hou CT; Patel RN; Laskin AI; Barnabe N
    Arch Biochem Biophys; 1982 Jun; 216(1):296-305. PubMed ID: 6808927
    [No Abstract]   [Full Text] [Related]  

  • 39. Formate dehydrogenase.
    Ferry JG
    FEMS Microbiol Rev; 1990 Dec; 7(3-4):377-82. PubMed ID: 2094290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes.
    Kröger A; Dorrer E; Winkler E
    Biochim Biophys Acta; 1980 Jan; 589(1):118-36. PubMed ID: 7356976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.