BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7356649)

  • 41. Reconstitution of a functional electron-transfer chain from purified formate dehydrogenase and fumarate reductase complexes.
    Unden G; Kröger A
    Methods Enzymol; 1986; 126():387-99. PubMed ID: 2856137
    [No Abstract]   [Full Text] [Related]  

  • 42. [Kinetics of NAD-dependent formate dehydrogenase from the methanol-utilizing yeast Candida methylica].
    Zaks AM; Avilova TV; Egorova OA; Popov VO; Egorov AM
    Biokhimiia; 1982 Apr; 47(4):546-51. PubMed ID: 7082688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli.
    Enoch HG; Lester RL
    J Biol Chem; 1975 Sep; 250(17):6693-705. PubMed ID: 1099093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The solvent effects on the kinetics of bacterial formate dehydrogenase reaction.
    Demchenko AP; Rusyn OI; Egorov AM; Tishkov VI
    Biochim Biophys Acta; 1990 Jul; 1039(3):290-6. PubMed ID: 2378888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein.
    Yamamoto I; Saiki T; Liu SM; Ljungdahl LG
    J Biol Chem; 1983 Feb; 258(3):1826-32. PubMed ID: 6822536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus.
    Belay N; Sparling R; Daniels L
    Appl Environ Microbiol; 1986 Nov; 52(5):1080-5. PubMed ID: 3098165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changing the Electron Acceptor Specificity of
    Kumar H; Leimkühler S
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003259
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Purification of the NADP+:F420 oxidoreductase of Methanosphaera stadtmanae.
    Elias DA; Juck DF; Berry KA; Sparling R
    Can J Microbiol; 2000 Nov; 46(11):998-1003. PubMed ID: 11109487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Is the NAD(P)H:flavin oxidoreductase from Escherichia coli a member of the ferredoxin-NADP+ reductase family?. Evidence for the catalytic role of serine 49 residue.
    Nivière V; Fieschi F; Décout JL; Fontecave M
    J Biol Chem; 1996 Jul; 271(28):16656-61. PubMed ID: 8663185
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering Candida boidinii formate dehydrogenase for activity with the non-canonical cofactor 3'-NADP(H).
    Vainstein S; Banta S
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37658768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NADPH-cytochrome P-450 reductase. Physical properties and redox behavior in the absence of the FAD moiety.
    Kurzban GP; Howarth J; Palmer G; Strobel HW
    J Biol Chem; 1990 Jul; 265(21):12272-9. PubMed ID: 2115516
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and characterization of formate dehydrogenase from Ancylobacter aquaticus strain KNK607M, and cloning of the gene.
    Nanba H; Takaoka Y; Hasegawa J
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):720-8. PubMed ID: 12784610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for the presence of a new NAD+-dependent formate dehydrogenase in Pseudomonas sp. 101 cells grown on a molybdenum-containing medium.
    Karzanov VV; Bogatsky YuA ; Tishkov VI; Egorov AM
    FEMS Microbiol Lett; 1989 Jul; 51(1):197-200. PubMed ID: 2777065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase.
    Ihara M; Kawano Y; Urano M; Okabe A
    PLoS One; 2013; 8(8):e71581. PubMed ID: 23936519
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion.
    Niks D; Hille R
    Protein Sci; 2019 Jan; 28(1):111-122. PubMed ID: 30120799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme.
    Grahame DA; Stadtman TC
    J Biol Chem; 1987 Mar; 262(8):3706-12. PubMed ID: 3818661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The flavin reductase activity of the flavoprotein component of sulfite reductase from Escherichia coli. A new model for the protein structure.
    Eschenbrenner M; Covès J; Fontecave M
    J Biol Chem; 1995 Sep; 270(35):20550-5. PubMed ID: 7657631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reconstitution "in vitro" of a formate or NADH dependent nitrite reductase activity starting from cytochrome c552 and membrane vesicles from Escherichia coli K-12.
    Sánchez-Crispín JA; Dubourdieu M
    Acta Cient Venez; 1984; 35(5-6):350-5. PubMed ID: 6100410
    [No Abstract]   [Full Text] [Related]  

  • 60. Purification and properties of formate dehydrogenase from Moraxella sp. strain C-1.
    Asano Y; Sekigawa T; Inukai H; Nakazawa A
    J Bacteriol; 1988 Jul; 170(7):3189-93. PubMed ID: 3384805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.