These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7356649)

  • 81. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 2. Formate dehydrogenase.
    Hermes JD; Morrical SW; O'Leary MH; Cleland WW
    Biochemistry; 1984 Nov; 23(23):5479-88. PubMed ID: 6391544
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B).
    Cunningham O; Gore MG; Mantle TJ
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [Enzyme activity of the formate hydrogenlyase complex in Citrobacter freundii].
    Zatsepin SS; Netrusov AI
    Mikrobiologiia; 1984; 53(2):246-50. PubMed ID: 6377026
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli.
    Cox JC; Edwards ES; DeMoss JA
    J Bacteriol; 1981 Mar; 145(3):1317-24. PubMed ID: 7009577
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Impeded electron transfer from a pathogenic FMN domain mutant of methionine synthase reductase and its responsiveness to flavin supplementation.
    Gherasim CG; Zaman U; Raza A; Banerjee R
    Biochemistry; 2008 Nov; 47(47):12515-22. PubMed ID: 18980384
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Discovery of an acidic, thermostable and highly NADP
    Alpdağtaş S; Yücel S; Kapkaç HA; Liu S; Binay B
    Biotechnol Lett; 2018 Jul; 40(7):1135-1147. PubMed ID: 29777512
    [TBL] [Abstract][Full Text] [Related]  

  • 87. S-Formyl glutathione as a substrate of bacterial formate dehydrogenase.
    Egorov AM; Tishkov VI; Avilova TV; Popov VO
    Biochem Biophys Res Commun; 1982 Jan; 104(1):1-5. PubMed ID: 7073661
    [No Abstract]   [Full Text] [Related]  

  • 88. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Kinetic and chemical mechanisms of yeast formate dehydrogenase.
    Blanchard JS; Cleland WW
    Biochemistry; 1980 Jul; 19(15):3543-50. PubMed ID: 6996706
    [No Abstract]   [Full Text] [Related]  

  • 90. Selenium-dependent enzymes.
    Stadtman TC
    Annu Rev Biochem; 1980; 49():93-110. PubMed ID: 6996574
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Process of energy conservation in the extremely haloalkaliphilic methyl-reducing methanogen Methanonatronarchaeum thermophilum.
    Steiniger F; Sorokin DY; Deppenmeier U
    FEBS J; 2022 Jan; 289(2):549-563. PubMed ID: 34435454
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability.
    Hoelsch K; Sührer I; Heusel M; Weuster-Botz D
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2473-81. PubMed ID: 22588502
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Formate dehydrogenase from Methanobacterium formicicum. Electron paramagnetic resonance spectroscopy of the molybdenum and iron-sulfur centers.
    Barber MJ; Siegel LM; Schauer NL; May HD; Ferry JG
    J Biol Chem; 1983 Sep; 258(18):10839-45. PubMed ID: 6309816
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Convenient synthesis of deazaflavin cofactor FO and its activity in F(420)-dependent NADP reductase.
    Hossain MS; Le CQ; Joseph E; Nguyen TQ; Johnson-Winters K; Foss FW
    Org Biomol Chem; 2015 May; 13(18):5082-5. PubMed ID: 25827330
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Formate dehydrogenase from Pseudomonas oxalaticus.
    Höpner T; Ruschig U; Müller U; Willnow P
    Methods Enzymol; 1982; 89 Pt D():531-7. PubMed ID: 7144587
    [No Abstract]   [Full Text] [Related]  

  • 97. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase.
    Vermilion JL; Ballou DP; Massey V; Coon MJ
    J Biol Chem; 1981 Jan; 256(1):266-77. PubMed ID: 6778861
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Purification and properties of the NADH and NADPH specific FMN oxidoreductases from Beneckea harveyi.
    Jablonski E; DeLuca M
    Biochemistry; 1977 Jun; 16(13):2932-6. PubMed ID: 880288
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ferredoxin-NADP+ oxidoreductase is the respiratory NADPH dehydrogenase of the cyanobacterium Anabaena variabilis.
    Scherer S; Alpes I; Sadowski H; Böger P
    Arch Biochem Biophys; 1988 Nov; 267(1):228-35. PubMed ID: 2461678
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Rat brain NADPH-dependent diaphorase. A possible relationship to cytochrome P450 reductase.
    Kemp MC; Kuonen DR; Sutton A; Roberts PJ
    Biochem Pharmacol; 1988 Aug; 37(16):3063-70. PubMed ID: 3135810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.