BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 7356977)

  • 1. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola.
    Staehelin LA; Golecki JR; Drews G
    Biochim Biophys Acta; 1980 Jan; 589(1):30-45. PubMed ID: 7356977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorophyll organization in green photosynthetic bacteria.
    Olson JM
    Biochim Biophys Acta; 1980 Dec; 594(1):33-51. PubMed ID: 7006697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria.
    Gerola PD; Olson JM
    Biochim Biophys Acta; 1986 Jan; 848(1):69-76. PubMed ID: 3942714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus.
    Sprague SG; Staehelin LA; DiBartolomeis MJ; Fuller RC
    J Bacteriol; 1981 Sep; 147(3):1021-31. PubMed ID: 7275928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria.
    Saga Y; Tamiaki H
    J Biosci Bioeng; 2006 Aug; 102(2):118-23. PubMed ID: 17027873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling.
    Montaño GA; Bowen BP; LaBelle JT; Woodbury NW; Pizziconi VB; Blankenship RE
    Biophys J; 2003 Oct; 85(4):2560-5. PubMed ID: 14507718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria.
    Pedersen MØ; Linnanto J; Frigaard NU; Nielsen NC; Miller M
    Photosynth Res; 2010 Jun; 104(2-3):233-43. PubMed ID: 20077007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes.
    Frigaard NU; Li H; Milks KJ; Bryant DA
    J Bacteriol; 2004 Feb; 186(3):646-53. PubMed ID: 14729689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy.
    Hohmann-Marriott MF; Blankenship RE; Roberson RW
    Photosynth Res; 2005 Nov; 86(1-2):145-54. PubMed ID: 16172934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic distribution of emitting transition dipoles in chlorosome from Chlorobium tepidum: fluorescence polarization anisotropy study of single chlorosomes.
    Shibata Y; Saga Y; Tamiaki H; Itoh S
    Photosynth Res; 2009 May; 100(2):67-78. PubMed ID: 19468858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a.
    Bryant DA; Vassilieva EV; Frigaard NU; Li H
    Biochemistry; 2002 Dec; 41(48):14403-11. PubMed ID: 12450407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum.
    Frigaard NU; Li H; Martinsson P; Das SK; Frank HA; Aartsma TJ; Bryant DA
    Photosynth Res; 2005 Nov; 86(1-2):101-11. PubMed ID: 16172929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria.
    Psencík J; Ikonen TP; Laurinmäki P; Merckel MC; Butcher SJ; Serimaa RE; Tuma R
    Biophys J; 2004 Aug; 87(2):1165-72. PubMed ID: 15298919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Förster energy transfer in chlorosomes of green photosynthetic bacteria.
    Causgrove TP; Brune DC; Blankenship RE
    J Photochem Photobiol B; 1992 Aug; 15(1-2):171-9. PubMed ID: 11536509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR.
    Egawa A; Fujiwara T; Mizoguchi T; Kakitani Y; Koyama Y; Akutsu H
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):790-5. PubMed ID: 17215361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium chlorobium tepidum.
    Frigaard NU; Matsuura K
    Biochim Biophys Acta; 1999 Jun; 1412(2):108-17. PubMed ID: 10393254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexanol-induced order-disorder transitions in lamellar self-assembling aggregates of bacteriochlorophyll c in Chlorobium tepidum chlorosomes.
    Arellano JB; Torkkeli M; Tuma R; Laurinmäki P; Melø TB; Ikonen TP; Butcher SJ; Serimaa RE; Psencík J
    Langmuir; 2008 Mar; 24(5):2035-41. PubMed ID: 18197717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria.
    Adams PG; Cadby AJ; Robinson B; Tsukatani Y; Tank M; Wen J; Blankenship RE; Bryant DA; Hunter CN
    Biochim Biophys Acta; 2013 Oct; 1827(10):1235-44. PubMed ID: 23867748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria.
    Wang J; Brune DC; Blankenship RE
    Biochim Biophys Acta; 1990 Feb; 1015(3):457-63. PubMed ID: 11536463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola.
    Steensgaard DB; van Walree CA; Permentier H; Bañeras L; Borrego CM; Garcia-Gil J; Aartsma TJ; Amesz J; Holzwarth AR
    Biochim Biophys Acta; 2000 Feb; 1457(1-2):71-80. PubMed ID: 10692551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.