These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7356989)

  • 1. 9-Aminoacridine fluorescence changes as a measure of surface charge density of the thylakoid membrane.
    Chow WS; Barber J
    Biochim Biophys Acta; 1980 Feb; 589(2):346-52. PubMed ID: 7356989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt-dependent changes of 9-aminoacridine fluorescence as a measure of charge densities of membrane surfaces.
    Chow WS; Barber J
    J Biochem Biophys Methods; 1980 Sep; 3(3):173-85. PubMed ID: 7451810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of an amphipathic fluorescence probe, 2-p-toluidinonaphthalene-6-sulphonate, with isolated chloroplasts.
    Searle GF; Barber J
    Biochim Biophys Acta; 1979 Mar; 545(3):508-18. PubMed ID: 427142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further studies of the thylakoid membrane surface charges by particle electrophoresis.
    Nakatani HY; Barber J
    Biochim Biophys Acta; 1980 Jun; 591(1):82-91. PubMed ID: 7388017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 9-Aminoacridine as a fluorescent probe of the electrical diffuse layer associated with the membranes of plant mitochondria.
    Møller IM; Chow WS; Palmer JM; Barber J
    Biochem J; 1981 Jan; 193(1):37-46. PubMed ID: 7305932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further studies of the relationship between cation-induced chlorophyll fluorescence and thylakoid membrane stacking changes.
    Chow WS; Barber J
    Biochim Biophys Acta; 1980 Nov; 593(1):149-57. PubMed ID: 7426642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The involvement of the electrical double layer in the quenching of 9-aminoacridine fluorescence by negatively charged surfaces.
    Searle GF; Barber J
    Biochim Biophys Acta; 1978 May; 502(2):309-20. PubMed ID: 26393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical considerations of mechanisms controlling cation effects on thylakoid membrane stacking and chlorophyll fluorescence.
    Rubin BT; Chow WS; Barber J
    Biochim Biophys Acta; 1981 Jan; 634(1):174-90. PubMed ID: 7470497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence changes in isolated broken chloroplasts and the involvement of the electrical double layer.
    Mills JD; Barber J
    Biophys J; 1978 Mar; 21(3):257-72. PubMed ID: 630043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between thylakoid stacking and salt induced chlorophyll fluorescence changes.
    Barber J; Chow WS; Scoufflaire C; Lannoye R
    Biochim Biophys Acta; 1980 Jun; 591(1):92-103. PubMed ID: 7388018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-induced pH changes in spinach chloroplast suspension. Changes in surface potential and surface pH of thylakoid membranes.
    Masamoto K; Itoh S; Nishimura M
    Biochim Biophys Acta; 1980 Jun; 591(1):142-52. PubMed ID: 7388011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of chloroplast internal protons with 9-aminoacridine. Probe binding, dark proton gradient, and salt effects.
    Haraux F; de Kouchkovsky Y
    Biochim Biophys Acta; 1980 Aug; 592(1):153-68. PubMed ID: 6249352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic control of chloroplast coupling factor binding to thylakoid membranes as indicated by cation effects of electron transport and reconstitution of photophosphorylation.
    Telfer A; Barber J; Jagendorf AT
    Biochim Biophys Acta; 1980 Jul; 591(2):331-45. PubMed ID: 6772211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stacking of chloroplast thylakoids. Quantitative analysis of the balance of forces between thylakoid membranes of chloroplasts, and the role of divalent cations.
    Sculley MJ; Duniec JT; Thorne SW; Chow WS; Boardman NK
    Arch Biochem Biophys; 1980 Apr; 201(1):339-46. PubMed ID: 7396508
    [No Abstract]   [Full Text] [Related]  

  • 15. Surface charges on chloroplast membranes as studied by particle electrophoresis.
    Nakatani HY; Barber J; Forrester JA
    Biochim Biophys Acta; 1978 Oct; 504(1):215-25. PubMed ID: 30479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation control of chlorophyll a fluorescence yield in chloroplasts. Location of cation sensitive sites.
    Mills JD; Telfer A; Barber J
    Biochim Biophys Acta; 1976 Sep; 440(3):495-505. PubMed ID: 822872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface potential and reaction of the membrane-bound electron transfer components. II. Integrity of the chloroplast membrane and reaction of P-700.
    Itoh S
    Biochim Biophys Acta; 1979 Dec; 548(3):596-607. PubMed ID: 508738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the thylakoid membrane surface properties on the distribution of ions in chloroplasts.
    Nakatani HY; Barber J; Minski MJ
    Biochim Biophys Acta; 1979 Jan; 545(1):24-35. PubMed ID: 758938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photovoltages in suspensions of magnetically oriented chloroplasts.
    Becker JF; Geacintov NE; Swenberg CE
    Biochim Biophys Acta; 1978 Sep; 503(3):545-54. PubMed ID: 687614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible effects of the detachment of stromal lamellae from granal stacks on salt-induced changes in spillover. A study by sonication of chloroplasts.
    Chow WS; Ford RC; Barber J
    Biochim Biophys Acta; 1981 Apr; 635(2):317-26. PubMed ID: 7236666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.