BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 7356995)

  • 1. Energy charge, phosphorylation potential and proton motive force in chloroplasts.
    Giersch C; Heber U; Kobayashi Y; Inoue Y; Shibata K; Heldt HW
    Biochim Biophys Acta; 1980 Mar; 590(1):59-73. PubMed ID: 7356995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 reduction by intact chloroplasts under a diminished proton gradient.
    Tillberg JE; Giersch C; Heber U
    Biochim Biophys Acta; 1977 Jul; 461(1):31-47. PubMed ID: 18173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark.
    Werdan K; Heldt HW; Milovancev M
    Biochim Biophys Acta; 1975 Aug; 396(2):276-92. PubMed ID: 239746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and hydrolysis of ATP by intact chloroplasts under flash illumination and in darkness.
    Inoue Y; Kobayashi Y; Shibata K; Heber U
    Biochim Biophys Acta; 1978 Oct; 504(1):142-52. PubMed ID: 30476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen requirement of photosynthetic CO2 assimilation.
    Ziem-Hanck U; Heber U
    Biochim Biophys Acta; 1980 Jul; 591(2):266-74. PubMed ID: 6772210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometry of reduction and phosphorylation during illumination of intact chloroplasts.
    Heber U
    Biochim Biophys Acta; 1973 Apr; 305(1):140-52. PubMed ID: 4146342
    [No Abstract]   [Full Text] [Related]  

  • 8. Control of electron flow in intact chloroplasts by the intrathylakoid pH, not by the phosphorylation potential.
    Kobayashi Y; Inoue Y; Shibata K; Heber U
    Planta; 1979 Sep; 146(4):481-6. PubMed ID: 24318257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of a site of energy coupling between plastoquinone and cytochrome f in the electron-transport chain of spinach chloroplasts.
    Böhme H; Cramer WA
    Biochemistry; 1972 Mar; 11(7):1155-60. PubMed ID: 5012973
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of the sesquiterpene lactone tetraesters thapsigargicin and thapsigargin, from roots of Thapsia garganica L., on isolated spinach chloroplasts.
    Santarius KA; Falsone G; Haddad H
    Toxicon; 1987; 25(4):389-99. PubMed ID: 3617076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rates and properties of endogenous cyclic photophosphorylation of isolated intact chloroplasts measured by CO2 fixation in the presence of dihydroxyacetone phosphate.
    Kaiser W; Urbach W
    Biochim Biophys Acta; 1976 Jan; 423(1):91-102. PubMed ID: 1247606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Availability of monovalent and divalent cations within intact chloroplasts for the action of ionophores nigericin and A23187.
    Telfer A; Barber J; Nicolson J
    Biochim Biophys Acta; 1975 Aug; 396(2):301-9. PubMed ID: 808237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in adenosine phosphates and energy charge in chloroplastic and nonchloroplastic compartments of wheat leaves (author's transl)].
    Sellami A
    Biochim Biophys Acta; 1976 Mar; 423(3):524-39. PubMed ID: 1259957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of proton translocation induced by ATPase activity in chloroplasts.
    Carmeli C; Lifshitz Y; Gepshtein A
    Biochim Biophys Acta; 1975 Feb; 376(2):249-58. PubMed ID: 234748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition and uncoupling of photophosphorylation in isolated chloroplasts by organotin, organomercury and diphenyleneiodonium compounds.
    Watling-Payne AS; Selwyn MJ
    Biochem J; 1974 Jul; 142(1):65-74. PubMed ID: 4441373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiocyanato-indoles as energy-transfer inhibitors in photophosphorylation.
    Brandon PC
    Arch Biochem Biophys; 1970 Jun; 138(2):655-73. PubMed ID: 4393556
    [No Abstract]   [Full Text] [Related]  

  • 17. Photophosphorylation in chloroplasts.
    Reeves SG; Hall DO
    Biochim Biophys Acta; 1978 Mar; 463(3-4):275-97. PubMed ID: 24467
    [No Abstract]   [Full Text] [Related]  

  • 18. [Electron transport and photophosphorylation, coupled with photoreduction of oxygen by chloroplasts of peas, grown under different conditions of illumination].
    Shmeleva VL; Ivanov BN; Red'ko TP
    Biokhimiia; 1982 Jul; 47(7):1104-7. PubMed ID: 7115816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed light studies on photosynthetic energy conversion. VIII. Evidence from millisecond emission of chloroplasts for two adenylate binding sites on membrane-bound coupling factor, CF1.
    Vambutas V; Bertsch W
    Biochim Biophys Acta; 1975 Jan; 376(1):169-79. PubMed ID: 235980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of bicarbonate action on photosynthetic electron transport in broken chloroplasts.
    Vermaas WF; Van Rensen JJ
    Biochim Biophys Acta; 1981 Jul; 636(2):168-74. PubMed ID: 6793066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.