These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 73570)

  • 21. The inhibition of calcium uptake and release by rat liver mitochondria by ruthenium red.
    Luthra R; Olson MS
    FEBS Lett; 1977 Sep; 81(1):142-6. PubMed ID: 902768
    [No Abstract]   [Full Text] [Related]  

  • 22. The influence of the intracellular concentration of sodium on the uptake of L-( 14 C)valine by chopped tissue from cerebral cortex.
    Jones CT; Banks P
    Biochem J; 1971 Jul; 123(3):341-5. PubMed ID: 5126090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ruthenium red inhibits the voltage-dependent increase in cytosolic free calcium in cortical synaptosomes from guinea-pig.
    Taipale HT; Kauppinen RA; Komulainen H
    Biochem Pharmacol; 1989 Apr; 38(7):1109-13. PubMed ID: 2468334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Electrocorticogram, steady potential of the brain and energy-rich phosphate fractions of the cerebral cortex during anesthetic overdosage, ischemia and cyanide poisoning].
    Döring HJ; Olbrisch RR
    Pflugers Arch; 1970; 319(1):12-35. PubMed ID: 5465282
    [No Abstract]   [Full Text] [Related]  

  • 25. Effect of mitochondrial inhibitors on type I cells.
    Wyatt CN; Buckler KJ
    Adv Exp Med Biol; 2003; 536():55-8. PubMed ID: 14635649
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of antiepileptic drugs on brain energy reserves during convulsions.
    King LJ; Carl J
    J Neurochem; 1969 Apr; 16(4):637-43. PubMed ID: 5768218
    [No Abstract]   [Full Text] [Related]  

  • 27. [Active transport of calcium in thymocytes].
    Jodin C; Landry Y
    C R Seances Soc Biol Fil; 1975; 169(5):1315-9. PubMed ID: 131632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake of calcium ions by synaptosomes from rat brain.
    Swanson PD; Anderson L; Stahl WL
    Biochim Biophys Acta; 1974 Jul; 356(2):174-83. PubMed ID: 4855335
    [No Abstract]   [Full Text] [Related]  

  • 29. Amino acid distribution and incorporation into proteins in isolated, electrically-stimulated cerebral tissues.
    Jones DA; McIlwain H
    J Neurochem; 1971 Jan; 18(1):41-58. PubMed ID: 5550077
    [No Abstract]   [Full Text] [Related]  

  • 30. Ionic mechanism of diphenylhydantoin action on glucose-induced insulin release.
    Herchuelz A; Lebrun P; Sener A; Malaisse WJ
    Eur J Pharmacol; 1981 Jul; 73(2-3):189-97. PubMed ID: 6273184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol].
    Krautzberger W; Kammermeier H; Kammermeier B
    Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286
    [No Abstract]   [Full Text] [Related]  

  • 32. Postischaemic reperfusion injury in the isolated rat heart: effect of ruthenium red.
    Figueredo VM; Dresdner KP; Wolney AC; Keller AM
    Cardiovasc Res; 1991 Apr; 25(4):337-42. PubMed ID: 1715813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is the adenosine receptor modulation of histamine-induced accumulation of inositol phosphates in cerebral cortical slices mediated by effects on calcium ion fluxes?
    Alexander SP; Hill SJ; Kendall DA
    J Neurochem; 1990 Oct; 55(4):1138-41. PubMed ID: 2118942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of electrical stimulation and ouabain on the uptake and efflux of L-[U-14C] valine in chopped tissue from guinea-pig cerebral cortex.
    Jones CT; Banks P
    Biochem J; 1970 Aug; 118(5):801-10. PubMed ID: 5476722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzyme transfer of phosphate from adenosine triphosphate to protein-bound serine residues in cerebral microsomes.
    Rodnight R; Lavin BE
    Biochem J; 1966 Nov; 101(2):495-501. PubMed ID: 4226015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The uptake of low concentrations of lithium ions into rat cerebral cortex slices and its dependence on cations.
    Wraae O; Hillman H; Round E
    J Neurochem; 1976 Apr; 26(4):835-43. PubMed ID: 965972
    [No Abstract]   [Full Text] [Related]  

  • 37. Control of aerobic glycolysis and pyruvate kinase activity in cerebral cortex slices.
    Takagaki G
    J Neurochem; 1968 Sep; 15(9):903-16. PubMed ID: 4234623
    [No Abstract]   [Full Text] [Related]  

  • 38. Turnover of protein-bound serine phosphate in respiring slices of guinea-pig cerebral cortex. Effects of putative transmitters, tetrodotoxin and other agents.
    Reddington M; Rodnight R; Williams M
    Biochem J; 1973 Mar; 132(3):475-82. PubMed ID: 4353378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium movements in brain slices in low sodium or calcium media.
    Stahl WL; Swanson PD
    J Neurochem; 1972 Oct; 19(10):2395-407. PubMed ID: 4658796
    [No Abstract]   [Full Text] [Related]  

  • 40. P-31 nuclear magnetic resonance analysis of brain: normoxic and anoxic brain slices.
    Cohen MM; Pettegrew JW; Kopp SJ; Minshew N; Glonek T
    Neurochem Res; 1984 Jun; 9(6):785-801. PubMed ID: 6493439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.