These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7357065)

  • 1. Enzyme reaction rates and the stochastic theory of kinetics.
    Dunker AM; Lusk JE; Gibbs JH
    Biophys Chem; 1980 Feb; 11(1):9-16. PubMed ID: 7357065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How enzymes work: analysis by modern rate theory and computer simulations.
    Garcia-Viloca M; Gao J; Karplus M; Truhlar DG
    Science; 2004 Jan; 303(5655):186-95. PubMed ID: 14716003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition state theory for enzyme kinetics.
    Truhlar DG
    Arch Biochem Biophys; 2015 Sep; 582():10-7. PubMed ID: 26008760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary dynamics of enzymes.
    Demetrius L
    Protein Eng; 1995 Aug; 8(8):791-800. PubMed ID: 8637848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid energy exchange of enzymes with solvent water by dipolar interaction.
    Schlitter J
    J Theor Biol; 1984 Feb; 106(3):303-13. PubMed ID: 6717033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel thermodynamic relationship based on Kramers Theory for studying enzyme kinetics under high viscosity.
    Siddiqui KS; Bokhari SA; Afzal AJ; Singh S
    IUBMB Life; 2004 Jul; 56(7):403-7. PubMed ID: 15545217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions.
    Saa P; Nielsen LK
    PLoS Comput Biol; 2015 Apr; 11(4):e1004195. PubMed ID: 25874556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A full stochastic description of the Michaelis-Menten reaction for small systems.
    Arányi P; Tóth J
    Acta Biochim Biophys Acad Sci Hung; 1977; 12(4):375-88. PubMed ID: 613716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit interactions in enzyme transition states--antagonism between substrate binding and reaction rate.
    Ricard J; Noat G
    J Theor Biol; 1984 Dec; 111(4):737-53. PubMed ID: 6527549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in heat capacity accurately predicts vibrational coupling in enzyme catalyzed reactions.
    Arcus VL; Pudney CR
    FEBS Lett; 2015 Aug; 589(17):2200-6. PubMed ID: 26172507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of enzyme catalysis. II. Oversaturation, case diagrams, reversible and irreversible behaviour.
    Albery WJ; Knowles JR
    J Theor Biol; 1987 Jan; 124(2):173-89. PubMed ID: 3657192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow.
    Das B; Gangopadhyay G
    J Chem Phys; 2018 May; 148(17):174104. PubMed ID: 29739224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction kinetics in living systems.
    Eyring H; Ma SM; Ueda I
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5549-53. PubMed ID: 6946491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.
    Qian H
    J Phys Chem B; 2006 Aug; 110(31):15063-74. PubMed ID: 16884217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.
    Reimers JR; McKemmish LK; McKenzie RH; Hush NS
    Phys Chem Chem Phys; 2015 Oct; 17(38):24641-65. PubMed ID: 26196265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum mechanical methods for enzyme kinetics.
    Gao J; Truhlar DG
    Annu Rev Phys Chem; 2002; 53():467-505. PubMed ID: 11972016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplifying principles for chemical and enzyme reaction kinetics.
    Klonowski W
    Biophys Chem; 1983 Sep; 18(2):73-87. PubMed ID: 6626688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic effects on reaction rates in a Michael addition catalyzed by chalcone isomerase. Beyond the frozen environment approach.
    Ruiz-Pernía JJ; Tuñón I; Moliner V; Hynes JT; Roca M
    J Am Chem Soc; 2008 Jun; 130(23):7477-88. PubMed ID: 18479090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-controlled effects in reversible enzymatic fast reaction systems--critical spherical shell and proximity rate constant.
    Chou KC; Forsén S
    Biophys Chem; 1980 Dec; 12(3-4):255-63. PubMed ID: 7225518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.