These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7357080)

  • 61. [Hemoglobin S as the cause of primary hyperviscosity of the blood].
    Mosca A; Samaja M; Niggeler M; Rossi-Bernardi L
    Ric Clin Lab; 1983; 13 Suppl 3():115-20. PubMed ID: 6672990
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Unexpected hemoglobin electrophoresis results following red cell exchange in a sickle cell anemia patient with acute chest syndrome.
    Robertson PB; Danielson CF; McCarthy LJ
    Transfus Sci; 1997 Jun; 18(2):195-8. PubMed ID: 10174684
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Heterogeneous nucleation in sickle hemoglobin: experimental validation of a structural mechanism.
    Rotter MA; Kwong S; Briehl RW; Ferrone FA
    Biophys J; 2005 Oct; 89(4):2677-84. PubMed ID: 16055526
    [TBL] [Abstract][Full Text] [Related]  

  • 64. New approach to accurate interpretation of sickle cell disease newborn screening by applying multiple of median cutoffs and ratios.
    Allaf B; Patin F; Elion J; Couque N
    Pediatr Blood Cancer; 2018 Sep; 65(9):e27230. PubMed ID: 29781571
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of total hemoglobin and hemoglobin S concentration on cerebral blood flow during transfusion therapy to prevent stroke in sickle cell disease.
    Hurlet-Jensen AM; Prohovnik I; Pavlakis SG; Piomelli S
    Stroke; 1994 Aug; 25(8):1688-92. PubMed ID: 8042222
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cord blood screening for haemoglobinopathies in northern Nigeria.
    Kulkarni AG; Jekeme SD
    Ann Trop Med Parasitol; 1986 Oct; 80(5):549-51. PubMed ID: 2443089
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Screening of blood donors for sickle cell trait using a DNA-based approach: Frequency in a multiethnic donor population.
    Gowda L; Vege S; Kessler D; Shaz B; Westhoff CM
    Transfusion; 2021 Jul; 61(7):2008-2013. PubMed ID: 33929058
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Noncovalent modification of deoxyhemoglobin S solubility and erythrocyte sickling.
    Waterman MR; Yamaoka K; Dahm L; Taylor J; Cottam GL
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2222-5. PubMed ID: 4526343
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gelation of deoxyhemoglobin A in concentrated phosphate buffer. Exhibition of delay time prior to aggregation and crystallization of deoxyhemoglobin A.
    Adachi K; Asakura T
    J Biol Chem; 1979 Dec; 254(24):12273-6. PubMed ID: 500713
    [No Abstract]   [Full Text] [Related]  

  • 70. Compound heterozygosity for hemoglobin C and Korle-Bu: moderate microcytic hemolytic anemia and acceleration of crystal formation [corrected].
    Nagel RL; Lin MJ; Witkowska HE; Fabry ME; Bestak M; Hirsch RE
    Blood; 1993 Sep; 82(6):1907-12. PubMed ID: 7691242
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nucleation-controlled aggregation of deoxyhemoglobin S. Participation of hemoglobin F in the aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Segal R; Asakura T
    J Biol Chem; 1980 Aug; 255(16):7595-603. PubMed ID: 6156939
    [No Abstract]   [Full Text] [Related]  

  • 72. On the Binding Free Energy and Molecular Origin of Sickle Cell Hemoglobin Aggregation.
    Galamba N; Pipolo S
    J Phys Chem B; 2018 Aug; 122(30):7475-7483. PubMed ID: 29995412
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nucleation of sickle hemoglobin mixed with hemoglobin A: experimental and theoretical studies of hybrid-forming mixtures.
    Rotter M; Yosmanovich D; Briehl RW; Kwong S; Ferrone FA
    Biophys J; 2011 Dec; 101(11):2790-7. PubMed ID: 22261068
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular dynamics of sickle and normal hemoglobins.
    Prabhakaran M; Johnson ME
    Biopolymers; 1993 May; 33(5):735-42. PubMed ID: 8343575
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pathophysiological characterization of the Townes mouse model for sickle cell disease.
    Alvarez-Argote J; Dlugi TA; Sundararajan T; Kleynerman A; Faber ML; McKillop WM; Medin JA
    Transl Res; 2023 Apr; 254():77-91. PubMed ID: 36323381
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Haemoglobin DIbadan in a haemoglobin S endemic population.
    Falusi AG; Ogunmola GB; Esan GJ
    Afr J Med Med Sci; 1979; 8(3-4):95-101. PubMed ID: 122322
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Solution-active structural alterations in liganded hemoglobins C (beta6 Glu --> Lys) and S (beta6 Glu --> Val).
    Hirsch RE; Juszczak LJ; Fataliev NA; Friedman JM; Nagel RL
    J Biol Chem; 1999 May; 274(20):13777-82. PubMed ID: 10318781
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of a new Sebia kit for analysis of hemoglobin fractions and variants on the Capillarys system.
    Louahabi A; Philippe M; Lali S; Wallemacq P; Maisin D
    Clin Chem Lab Med; 2006; 44(3):340-5. PubMed ID: 16519609
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Screening for abnormal hemoglobins in the middle east: new data on hemoglobin S and the presence of hemoglobin C in Saudi Arabia.
    Gelpi AP; King MC
    Acta Haematol; 1976; 56(6):334-7. PubMed ID: 827897
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Anion transport in normal erythrocytes, sickle red cells, and ghosts in relation to hemoglobins and magnesium.
    Teti D; Venza I; Crupi M; Busà M; Loddo S; Romano L
    Arch Biochem Biophys; 2002 Jul; 403(2):149-54. PubMed ID: 12139963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.