These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 7358102)

  • 41. Identification of 5 spino-olivocerebellar paths ascending through the ventral funiculus of the cord.
    Oscarsson O; Sjölund B
    Brain Res; 1974 Apr; 69(2):331-5. PubMed ID: 4823096
    [No Abstract]   [Full Text] [Related]  

  • 42. A novel site of synaptic relay for climbing fibre pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone.
    Ackerley R; Pardoe J; Apps R
    J Physiol; 2006 Oct; 576(Pt 2):503-18. PubMed ID: 16887878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Common principles of sensory encoding in spinal reflex modules and cerebellar climbing fibres.
    Garwicz M; Levinsson A; Schouenborg J
    J Physiol; 2002 May; 540(Pt 3):1061-9. PubMed ID: 11986390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone.
    Garwicz M; Jorntell H; Ekerot CF
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):277-93. PubMed ID: 9729638
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. IV. The projection to the anterior lobe.
    Brodal A; Walberg F
    J Comp Neurol; 1977 Mar; 172(1):85-108. PubMed ID: 65365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Somatotopical organisation within the climbing fibre projection to the paramedian lobule and copula pyramidis of the rat cerebellum.
    Atkins MJ; Apps R
    J Comp Neurol; 1997 Dec; 389(2):249-63. PubMed ID: 9416920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones.
    Pijpers A; Apps R; Pardoe J; Voogd J; Ruigrok TJ
    J Neurosci; 2006 Nov; 26(46):12067-80. PubMed ID: 17108180
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative analysis of converging spinal and cuneate mossy fibre afferent projections to the rat cerebellar anterior lobe.
    Alisky JM; Tolbert DL
    Neuroscience; 1997 Sep; 80(2):373-88. PubMed ID: 9284341
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Connexions from large, ipsilateral hind limb muscle and skin afferents to the rostral main cuneate nucleus and to the nucleus X region in the cat.
    Johansson H; Silfvenius H
    J Physiol; 1977 Feb; 265(2):395-428. PubMed ID: 850200
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum.
    Brown IE; Bower JM
    J Comp Neurol; 2001 Jan; 429(1):59-70. PubMed ID: 11086289
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional organization of climbing fibre projection to the cerebellar anterior lobe of the rat.
    Jörntell H; Ekerot C; Garwicz M; Luo XL
    J Physiol; 2000 Jan; 522 Pt 2(Pt 2):297-309. PubMed ID: 10639105
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mossy and climbing fibre organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex.
    Provini L; Redman S; Strata P
    Exp Brain Res; 1968; 6(3):216-33. PubMed ID: 5712701
    [No Abstract]   [Full Text] [Related]  

  • 53. A physiological study of identification, axonal course and cerebellar projection of spinocerebellar tract cells in the central cervical nucleus of the cat.
    Hirai N; Hongo T; Sasaki S
    Exp Brain Res; 1984; 55(2):272-85. PubMed ID: 6745367
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nucleus Z: a somatosensory relay to motor thalamus.
    Mackel R; Miyashita E
    J Neurophysiol; 1993 May; 69(5):1607-20. PubMed ID: 8509830
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Submodality segregation and receptive-field sequences in cuneate, gracile, and external cuneate nuclei of the cat.
    Dykes RW; Rasmusson DD; Sretavan D; Rehman NB
    J Neurophysiol; 1982 Mar; 47(3):389-416. PubMed ID: 6461730
    [No Abstract]   [Full Text] [Related]  

  • 56. Responses evoked in the cerebellar cortex by stimulating mossy fibre pathways to the cerebellum.
    Sasaki K; Strata P
    Exp Brain Res; 1967; 3(2):95-110. PubMed ID: 6031547
    [No Abstract]   [Full Text] [Related]  

  • 57. Input from ipsilateral proprio- and exteroceptive hind limb afferents to nucleus Z of the cat medulla oblongata.
    Johansson H; Silfvenius H
    J Physiol; 1977 Feb; 265(2):371-93. PubMed ID: 850199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Responses to a spino-olivo-cerebellar pathway in the cat.
    Armstrong DM; Harvey RJ
    J Physiol; 1968 Jan; 194(1):147-68. PubMed ID: 5639763
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The projection of splanchnic afferents on the cerebellum of the cat.
    Newman PP; Paul DH
    J Physiol; 1969 May; 202(1):223-7. PubMed ID: 5770891
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure-function relations of two somatotopically corresponding regions of the rat cerebellar cortex: olivo-cortico-nuclear connections.
    Pardoe J; Apps R
    Cerebellum; 2002 Jul; 1(3):165-84. PubMed ID: 12879979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.