These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7358456)
1. Empirical calculations on cyclic dipeptides. Conformations of aspartic acid, glutamic acid and histidine residues. Genest M; Ptak M Int J Pept Protein Res; 1980 Jan; 15(1):5-19. PubMed ID: 7358456 [TBL] [Abstract][Full Text] [Related]
2. Empirical calculations on cyclic dipeptides. Conformations of serine, threonine and histidine residues. Genest M; Ptak M Int J Pept Protein Res; 1978 Mar; 11(3):194-208. PubMed ID: 649255 [TBL] [Abstract][Full Text] [Related]
3. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis. Yamazaki T; Nunami K; Goodman M Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501 [TBL] [Abstract][Full Text] [Related]
4. Conformational studies of heterochiral peptides with diastereoisomeric residues: crystal and molecular structures of linear dipeptides derived from leucine, isoleucine, and allo-isoleucine. Di Blasio B; Saviano M; Del Duca V; De Simone G; Rossi F; Pedone C; Benedetti E; Lorenzi GP Biopolymers; 1995 Oct; 36(4):401-8. PubMed ID: 7578937 [TBL] [Abstract][Full Text] [Related]
5. [Conformational states of cyclic dipeptides with lactam bond between omega-functions of lysine and aspartic or glutamic acid residues]. Kostetskiĭ PV; Arkhipova SF; Artem'ev IV; Rodionov IL; Rodionova LN; Ivanov VT Bioorg Khim; 1997 Jul; 23(7):531-8. PubMed ID: 9471972 [TBL] [Abstract][Full Text] [Related]
6. Conformation and structure of acidic dipeptides. Crystal structures of L-alanyl-L-aspartic acid and alpha-L-glutamyl-L-aspartic acid. Eggleston DS; Hodgson DJ Int J Pept Protein Res; 1983 Mar; 21(3):288-95. PubMed ID: 6853030 [TBL] [Abstract][Full Text] [Related]
7. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. Catak S; Monard G; Aviyente V; Ruiz-López MF J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962 [TBL] [Abstract][Full Text] [Related]
8. Conformational preferences of proline analogues with different ring size. Jhon JS; Kang YK J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495 [TBL] [Abstract][Full Text] [Related]
9. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284 [TBL] [Abstract][Full Text] [Related]
10. Conformation of aminosuccinyl dipeptides Ac-L-X-L-Asu-NMe from empirical energy calculations. Capasso S; Mattia CA; Mazzarella L; Sica F; Zagari A Pept Res; 1992; 5(6):325-30. PubMed ID: 1493359 [TBL] [Abstract][Full Text] [Related]
11. Conformation of aminosuccinyl dipeptides Ac-Asu-X-NHMe from empirical energy calculations. Capasso S; Mattia CA; Mazzarella L; Sica F; Zagari A Pept Res; 1990; 3(6):262-70. PubMed ID: 2134069 [TBL] [Abstract][Full Text] [Related]
12. Conformation and sweet tastes of L-aspartyl dipeptide methyl esters. Kim YJ; Han SJ; Kim SC; Kang YK Biopolymers; 1994 Aug; 34(8):1037-48. PubMed ID: 8075386 [TBL] [Abstract][Full Text] [Related]
13. Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide. Bour P; Kim J; Kapitan J; Hammer RP; Huang R; Wu L; Keiderling TA Chirality; 2008 Nov; 20(10):1104-19. PubMed ID: 18506832 [TBL] [Abstract][Full Text] [Related]
14. Conformation of cyclo-(L-threonine)2 and cyclo-(L-allothreonine)2. A proton and carbon n.m.r study. Kopple KD; Narutis V Int J Pept Protein Res; 1981 Jul; 18(1):33-40. PubMed ID: 6273344 [TBL] [Abstract][Full Text] [Related]
15. The low energy tautomers and conformers of the dipeptides HisGly and GlyHis and of their sodium ion complexes in the gas phase. Kapota C; Ohanessian G Phys Chem Chem Phys; 2005 Nov; 7(21):3744-55. PubMed ID: 16358024 [TBL] [Abstract][Full Text] [Related]
16. The effect of the L-azetidine-2-carboxylic acid residue on protein conformation. I. Conformations of the residue and of dipeptides. Zagari A; Némethy G; Scheraga HA Biopolymers; 1990; 30(9-10):951-9. PubMed ID: 2092823 [TBL] [Abstract][Full Text] [Related]
17. Effect of lysine side chain length on intra-helical glutamate--lysine ion pairing interactions. Cheng RP; Girinath P; Ahmad R Biochemistry; 2007 Sep; 46(37):10528-37. PubMed ID: 17718542 [TBL] [Abstract][Full Text] [Related]
18. Conformation of histidine model peptides. I. Conformational energy calculations for L-alanyl-L-histidine diketopiperazine. Grebow PE; Hooker TM Biopolymers; 1974 Nov; 13(11):2349-66. PubMed ID: 4429787 [No Abstract] [Full Text] [Related]
19. [Study of trypsin-substrate and trypsin-inhibitor complexes. 1. Conformation of Asp-102, His-57 and Ser-195 residues in the trypsin active center]. Godzhaev NM Mol Biol (Mosk); 1984; 18(5):1432-5. PubMed ID: 6438492 [TBL] [Abstract][Full Text] [Related]
20. Negative ion fragmentations of deprotonated peptides: backbone cleavages directed through both Asp and Glu. Brinkworth CS; Dua S; McAnoy AM; Bowie JH Rapid Commun Mass Spectrom; 2001; 15(20):1965-73. PubMed ID: 11596143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]