These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 7358635)
1. Stopped-flow studies on the chemical modification with N-bromosuccinimide of model compounds of tryptophan residues. Ohnishi M; Kawagishi T; Abe T; Hiromi K J Biochem; 1980 Jan; 87(1):273-9. PubMed ID: 7358635 [TBL] [Abstract][Full Text] [Related]
2. Stopped-flow chemical modification with N-bromosuccinimide: a good probe for changes in the microenvironment of the Trp 62 residue of chicken egg white lysozyme. Ohnishi M; Kawagishi T; Hiromi K Arch Biochem Biophys; 1989 Jul; 272(1):46-51. PubMed ID: 2735767 [TBL] [Abstract][Full Text] [Related]
3. Effect of N-bromosuccinimide modification on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli. Activity, spectrophotometric, fluorescence and circular dichroism studies. Williams MN J Biol Chem; 1975 Jan; 250(1):322-30. PubMed ID: 237891 [TBL] [Abstract][Full Text] [Related]
4. Studies on the chemical modification of tryptophan residues in thermolysin and in talopeptin (MKI) with N-bromosuccinimide. Kitagishi K; Hiromi K J Biochem; 1983 Jul; 94(1):129-35. PubMed ID: 6619105 [TBL] [Abstract][Full Text] [Related]
5. [Chemical modification of tryptophan residues of leucyl tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide]. Korneliuk AI; Shilin VV; Gudzera OI; Rozhko OT; Matsuka GKh Bioorg Khim; 1985 May; 11(5):605-12. PubMed ID: 3929794 [TBL] [Abstract][Full Text] [Related]
6. N-bromosuccinimide oxidation of a glucoamylase from Aspergillus saitoi. Inokuchi N; Takahashi T; Yoshimoto A; Irie M J Biochem; 1982 May; 91(5):1661-8. PubMed ID: 6807973 [TBL] [Abstract][Full Text] [Related]
7. Catalytic and regulatory functions of N-bromosuccinimide-modified bovine thrombin. Pal PK; Starr T; Gertler MM Thromb Res; 1984 Nov; 36(4):293-303. PubMed ID: 6523442 [TBL] [Abstract][Full Text] [Related]
8. Kinetic studies on the chemical modification of lysozyme by N-bromosuccinimide and its protection by substrates and analogs. Hiromi K; Kawagishi T; Ohnishi M J Biochem; 1977 Jun; 81(6):1583-6. PubMed ID: 893364 [TBL] [Abstract][Full Text] [Related]
9. Discrimination between the four tryptophan residues of MM-creatine kinase on the basis of the effect of N-bromosuccinimide on activity and spectral properties. Clottes E; Vial C Arch Biochem Biophys; 1996 May; 329(1):97-103. PubMed ID: 8619641 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan residues of saccharifying alpha-amylase from Bacillus subtilis. A kinetic discrimination of states of tryptophan residues using N-bromosuccinimide. Fujimori H; Ohnishi M; Hiromi K J Biochem; 1978 May; 83(5):1503-10. PubMed ID: 96111 [TBL] [Abstract][Full Text] [Related]
12. Chemical modification of the tryptophan residues of wheat-germ agglutinin. Effect on fluorescence and saccharide-binding properties. Privat JP; Lotan R; Bouchard P; Sharon N; Monsigny M Eur J Biochem; 1976 Sep; 68(2):563-72. PubMed ID: 976273 [TBL] [Abstract][Full Text] [Related]
13. Leader peptidase from Escherichia coli: overexpression, characterization, and inactivation by modification of tryptophan residues 300 and 310 with N-bromosuccinimide. Kim YT; Muramatsu T; Takahashi K J Biochem; 1995 Mar; 117(3):535-44. PubMed ID: 7629019 [TBL] [Abstract][Full Text] [Related]
14. Chemical modification and inactivation of rat liver arginase by N-bromosuccinimide: reaction with His141. Daghigh F; Cavalli RC; Soprano DR; Ash DE Arch Biochem Biophys; 1996 Mar; 327(1):107-12. PubMed ID: 8615679 [TBL] [Abstract][Full Text] [Related]
15. Studies on tryptophan residues of Abrus agglutinin. Stopped-flow kinetics of modification and fluorescence-quenching studies. Patanjali SR; Swamy MJ; Surolia A Biochem J; 1987 Apr; 243(1):79-86. PubMed ID: 3606583 [TBL] [Abstract][Full Text] [Related]
16. Modification of tryptophan residues of rabbit hemopexin by N-bromosuccinimide. Morgan WT; Muller-Eberhard U Enzyme; 1974; 17(1):108-15. PubMed ID: 4836432 [No Abstract] [Full Text] [Related]
17. The reactivity of tryptophan residues in proteins. Stopped-flow kinetics of fluorescence quenching. Peterman BF; Laidler KJ Biochim Biophys Acta; 1979 Apr; 577(2):314-23. PubMed ID: 454650 [TBL] [Abstract][Full Text] [Related]
18. The chemical and kinetic consequences of the modification of papain by N-bromosuccinimide. Glick BR; Brubacher LJ Can J Biochem; 1977 Apr; 55(4):424-32. PubMed ID: 15710 [TBL] [Abstract][Full Text] [Related]
19. Modification of bovine alpha-lactalbumin with N-bromosuccinimide and 2-hydroxy-5-nitrobenzylbromide. Bell JE; Castellino FJ; Trayer IP; Hill RL J Biol Chem; 1975 Oct; 250(19):7579-85. PubMed ID: 809437 [TBL] [Abstract][Full Text] [Related]
20. Chemical modification of tryptophan residues in Escherichia coli succinyl-CoA synthetase. Effect on structure and enzyme activity. Ybarra J; Prasad AR; Nishimura JS Biochemistry; 1986 Nov; 25(22):7174-8. PubMed ID: 3542020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]