BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 7358635)

  • 1. Stopped-flow studies on the chemical modification with N-bromosuccinimide of model compounds of tryptophan residues.
    Ohnishi M; Kawagishi T; Abe T; Hiromi K
    J Biochem; 1980 Jan; 87(1):273-9. PubMed ID: 7358635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stopped-flow chemical modification with N-bromosuccinimide: a good probe for changes in the microenvironment of the Trp 62 residue of chicken egg white lysozyme.
    Ohnishi M; Kawagishi T; Hiromi K
    Arch Biochem Biophys; 1989 Jul; 272(1):46-51. PubMed ID: 2735767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of N-bromosuccinimide modification on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli. Activity, spectrophotometric, fluorescence and circular dichroism studies.
    Williams MN
    J Biol Chem; 1975 Jan; 250(1):322-30. PubMed ID: 237891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the chemical modification of tryptophan residues in thermolysin and in talopeptin (MKI) with N-bromosuccinimide.
    Kitagishi K; Hiromi K
    J Biochem; 1983 Jul; 94(1):129-35. PubMed ID: 6619105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Chemical modification of tryptophan residues of leucyl tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide].
    Korneliuk AI; Shilin VV; Gudzera OI; Rozhko OT; Matsuka GKh
    Bioorg Khim; 1985 May; 11(5):605-12. PubMed ID: 3929794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-bromosuccinimide oxidation of a glucoamylase from Aspergillus saitoi.
    Inokuchi N; Takahashi T; Yoshimoto A; Irie M
    J Biochem; 1982 May; 91(5):1661-8. PubMed ID: 6807973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic and regulatory functions of N-bromosuccinimide-modified bovine thrombin.
    Pal PK; Starr T; Gertler MM
    Thromb Res; 1984 Nov; 36(4):293-303. PubMed ID: 6523442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies on the chemical modification of lysozyme by N-bromosuccinimide and its protection by substrates and analogs.
    Hiromi K; Kawagishi T; Ohnishi M
    J Biochem; 1977 Jun; 81(6):1583-6. PubMed ID: 893364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination between the four tryptophan residues of MM-creatine kinase on the basis of the effect of N-bromosuccinimide on activity and spectral properties.
    Clottes E; Vial C
    Arch Biochem Biophys; 1996 May; 329(1):97-103. PubMed ID: 8619641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan residues of saccharifying alpha-amylase from Bacillus subtilis. A kinetic discrimination of states of tryptophan residues using N-bromosuccinimide.
    Fujimori H; Ohnishi M; Hiromi K
    J Biochem; 1978 May; 83(5):1503-10. PubMed ID: 96111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The essential tryptophan residues of pig kidney aminoacylase.
    Chen R; Xu D; Zhou HM
    Biochem Mol Biol Int; 1997 Dec; 43(6):1277-83. PubMed ID: 9442923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of the tryptophan residues of wheat-germ agglutinin. Effect on fluorescence and saccharide-binding properties.
    Privat JP; Lotan R; Bouchard P; Sharon N; Monsigny M
    Eur J Biochem; 1976 Sep; 68(2):563-72. PubMed ID: 976273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leader peptidase from Escherichia coli: overexpression, characterization, and inactivation by modification of tryptophan residues 300 and 310 with N-bromosuccinimide.
    Kim YT; Muramatsu T; Takahashi K
    J Biochem; 1995 Mar; 117(3):535-44. PubMed ID: 7629019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification and inactivation of rat liver arginase by N-bromosuccinimide: reaction with His141.
    Daghigh F; Cavalli RC; Soprano DR; Ash DE
    Arch Biochem Biophys; 1996 Mar; 327(1):107-12. PubMed ID: 8615679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on tryptophan residues of Abrus agglutinin. Stopped-flow kinetics of modification and fluorescence-quenching studies.
    Patanjali SR; Swamy MJ; Surolia A
    Biochem J; 1987 Apr; 243(1):79-86. PubMed ID: 3606583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of tryptophan residues of rabbit hemopexin by N-bromosuccinimide.
    Morgan WT; Muller-Eberhard U
    Enzyme; 1974; 17(1):108-15. PubMed ID: 4836432
    [No Abstract]   [Full Text] [Related]  

  • 17. The reactivity of tryptophan residues in proteins. Stopped-flow kinetics of fluorescence quenching.
    Peterman BF; Laidler KJ
    Biochim Biophys Acta; 1979 Apr; 577(2):314-23. PubMed ID: 454650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemical and kinetic consequences of the modification of papain by N-bromosuccinimide.
    Glick BR; Brubacher LJ
    Can J Biochem; 1977 Apr; 55(4):424-32. PubMed ID: 15710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of bovine alpha-lactalbumin with N-bromosuccinimide and 2-hydroxy-5-nitrobenzylbromide.
    Bell JE; Castellino FJ; Trayer IP; Hill RL
    J Biol Chem; 1975 Oct; 250(19):7579-85. PubMed ID: 809437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of tryptophan residues in Escherichia coli succinyl-CoA synthetase. Effect on structure and enzyme activity.
    Ybarra J; Prasad AR; Nishimura JS
    Biochemistry; 1986 Nov; 25(22):7174-8. PubMed ID: 3542020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.