These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 7358646)
1. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme. Tanizawa K; Kasaba Y; Kanaoka Y J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646 [TBL] [Abstract][Full Text] [Related]
2. "Inverse substrates" for trypsin-like enzymes. Nozawa M; Tanizawa K; Kanaoka Y J Pharmacobiodyn; 1980 Apr; 3(4):213-9. PubMed ID: 6451682 [TBL] [Abstract][Full Text] [Related]
3. Behavior of trypsin and related enzymes toward amidinophenyl esters. Nozawa M; Tanizawa K; Kanaoka Y; Moriya H J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906 [TBL] [Abstract][Full Text] [Related]
4. Essential roles of alkylammonium and alkylguanidinium ions in trypsin-catalyzed hydrolysis of acetylglycine esters: enhancement of catalytic efficiency analyzed by the use of "inverse substrates". Tanizawa K; Nakano M; Lawson WB; Kanaoka Y J Biochem; 1982 Sep; 92(3):945-51. PubMed ID: 7142128 [TBL] [Abstract][Full Text] [Related]
5. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters. Tanizawa K; Kanaoka Y J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793 [TBL] [Abstract][Full Text] [Related]
6. Enantiomeric specificity at the deacylation process of tryptic catalysis. Tanizawa K; Yamada H; Kanaoka Y Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332 [TBL] [Abstract][Full Text] [Related]
7. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates". Fujioka T; Tanizawa K; Kanaoka Y J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132 [TBL] [Abstract][Full Text] [Related]
8. Protease-catalyzed peptide synthesis using inverse substrates: the influence of reaction conditions on the trypsin acyl transfer efficiency. Schellenberger V; Jakubke HD; Zapevalova NP; Mitin YV Biotechnol Bioeng; 1991 Jun; 38(1):104-8. PubMed ID: 18600704 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic interactions in the urokinase active centre. Inhibitory action of alkyl ammonium and amidinium ions: comparison with trypsin. Christova E; Yomtova V; Blagoev B Int J Pept Protein Res; 1980 May; 15(5):459-63. PubMed ID: 7002821 [TBL] [Abstract][Full Text] [Related]
10. A novel chiral microenvironmental probe at the active site of trypsin. Extrinsic cotton effects of acyl-trypsin possessing an enantiomeric pair of chromophores. Nakayama H; Tanizawa K; Kanaoka Y; Witkop B Eur J Biochem; 1980 Nov; 112(2):403-9. PubMed ID: 7460930 [TBL] [Abstract][Full Text] [Related]
12. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate. Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886 [TBL] [Abstract][Full Text] [Related]
13. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin. Tripathi R; Nair NN J Phys Chem B; 2016 Mar; 120(10):2681-90. PubMed ID: 26918257 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of tryptic enzymes based on enantiomeric specificity at the deacylation step. Yamada H; Tanizawa K; Kanaoka Y FEBS Lett; 1988 Jan; 227(2):195-7. PubMed ID: 2962887 [TBL] [Abstract][Full Text] [Related]
15. Interaction between proteins and detergents which contain a hydrocarbon chain longer than 16 carbon atoms. III. Competitive inhibition of trypsin by cetyldimethylbenzylammonium chloride. Nakaya K; Ushiwata A; Nakamura Y Biochim Biophys Acta; 1976 Jul; 439(1):116-24. PubMed ID: 952949 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of inhibition of RTEM-2 beta-lactamase by cephamycins: relative importance of the 7 alpha-methoxy group and the 3' leaving group. Faraci WS; Pratt RF Biochemistry; 1986 May; 25(10):2934-41. PubMed ID: 3487346 [TBL] [Abstract][Full Text] [Related]
17. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis. Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782 [TBL] [Abstract][Full Text] [Related]
18. Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine. Volumetric study of wild-type and D70G mutant behavior. Masson P; Bec N; Froment MT; Nachon F; Balny C; Lockridge O; Schopfer LM Eur J Biochem; 2004 May; 271(10):1980-90. PubMed ID: 15128307 [TBL] [Abstract][Full Text] [Related]
19. Kinetic studies of rat kidney gamma-glutamyltranspeptidase deacylation reveal a general base-catalyzed mechanism. Castonguay R; Lherbet C; Keillor JW Biochemistry; 2003 Oct; 42(39):11504-13. PubMed ID: 14516202 [TBL] [Abstract][Full Text] [Related]
20. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes. Nozawa M; Tanizawa K; Kanaoka Y J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]