These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7358646)

  • 21. [Development of "inverse substrates" for trypsin. Application to the studies on the structure and function of the enzyme and to the design for biologically active compounds].
    Tanizawa K
    Yakugaku Zasshi; 1985 May; 105(5):430-41. PubMed ID: 3162015
    [No Abstract]   [Full Text] [Related]  

  • 22. Pressure dependence of trypsin-catalyzed hydrolyses of specific substrates.
    Kunugi S; Fukuda M; Ise N
    Biochim Biophys Acta; 1982 May; 704(1):107-13. PubMed ID: 7093284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoregulation of deacylation rate of acyl trypsin derived from photoresponsive inverse substrate.
    Sekizaki H; Kumagai A; Itoh K; Toyota E; Horita K; Noguchi Y; Tanizawa K
    Bioorg Med Chem Lett; 2003 Nov; 13(21):3809-12. PubMed ID: 14552785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of trypsin with active-site-directed enzyme-activated nitrosoamide substrates.
    White EH; Chen Y
    Biochemistry; 1995 Nov; 34(46):15123-33. PubMed ID: 7578126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protease-catalyzed peptide synthesis using inverse substrates: the synthesis of Pro-Xaa-bonds by trypsin.
    Schellenberger V; Schellenberger U; Jakubke HD; Zapevalova NP; Mitin YV
    Biotechnol Bioeng; 1991 Jul; 38(3):319-21. PubMed ID: 18600766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological
    Mukhametgalieva AR; Nemtarev AV; Sykaev VV; Pashirova TN; Masson P
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic effects in trypsin reactions. Influence of salts.
    Tõugu V; Tiivel T; Talts P; Siksnis V; Poyarkova S; Kesvatera T; Aaviksaar A
    Eur J Biochem; 1994 Jun; 222(2):475-81. PubMed ID: 8020486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specific spin-labeling at trypsin active site. Application of 'inverse substrate' to the structural analysis of the active site.
    Fujioka T; Tanizawa K; Kanaoka Y
    Biochim Biophys Acta; 1980 Mar; 612(1):205-12. PubMed ID: 6244849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic analysis of the action of tissue transglutaminase on peptide and protein substrates.
    Case A; Stein RL
    Biochemistry; 2003 Aug; 42(31):9466-81. PubMed ID: 12899634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling study on a hydrolytic mechanism of class A beta-lactamases.
    Ishiguro M; Imajo S
    J Med Chem; 1996 May; 39(11):2207-18. PubMed ID: 8667364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic investigation of soybean trypsin-like enzyme catalysis.
    Nishikata M
    J Biochem; 1985 Apr; 97(4):1001-9. PubMed ID: 4040906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protease-catalyzed hydrolysis of substrate mimetics (inverse substrates): A new approach reveals a new mechanism.
    Thormann M; Thust S; Hofmann HJ; Bordusa F
    Biochemistry; 1999 May; 38(19):6056-62. PubMed ID: 10320331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isothermal titration calorimetry determination of individual rate constants of trypsin catalytic activity.
    Aguirre C; Condado-Morales I; Olguin LF; Costas M
    Anal Biochem; 2015 Jun; 479():18-27. PubMed ID: 25823683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic analysis reveals structural rearrangement during the acylation step in human trypsin 4 on 4-methylumbelliferyl 4-guanidinobenzoate substrate analogue.
    Tóth J; Gombos L; Simon Z; Medveczky P; Szilágyi L; Gráf L; Málnási-Csizmadia A
    J Biol Chem; 2006 May; 281(18):12596-602. PubMed ID: 16492676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inverse substrates: novel synthetic substrates for trypsin and related enzymes.
    Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.