These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 7358647)

  • 1. The interactions of thiol compounds with porcine erythrocyte catalase.
    Takeda A; Miyahara T; Hachimori A; Samejima T
    J Biochem; 1980 Feb; 87(2):429-39. PubMed ID: 7358647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the denaturation of porcine erythrocyte catalase with alkali, urea, and guanidine hydrochloride in relation to its subunit structure.
    Takeda A; Hirano K; Shiroya Y; Samejima T
    J Biochem; 1983 Apr; 93(4):967-75. PubMed ID: 6863240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic circular dichroism studies of bovine liver catalase.
    Browett WR; Stillman MJ
    Biochim Biophys Acta; 1979 Apr; 577(2):291-306. PubMed ID: 36920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of halide ions on porcine kidney catalase.
    Miyahara T; Samejima T
    J Biochem; 1982 Feb; 91(2):525-35. PubMed ID: 7068574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral studies of human erythrocyte catalase.
    Palcic M; Dunford HB
    Can J Biochem; 1979 Apr; 57(4):321-9. PubMed ID: 221084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption and Raman spectroscopy study of cyt c-thiol complexes in acidic solutions.
    Tomková A; Antalík M; Bágel'ová J; Miskovský P; Ulicný J
    Gen Physiol Biophys; 1992 Jun; 11(3):273-86. PubMed ID: 1330812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiols and neuronal nitric oxide synthase: complex formation, competitive inhibition, and enzyme stabilization.
    Gorren AC; Schrammel A; Schmidt K; Mayer B
    Biochemistry; 1997 Apr; 36(14):4360-6. PubMed ID: 9100033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the specific association of porcine erythrocyte catalase caused by formation of disulfide cross-links.
    Takeda A; Samejima T
    Biochim Biophys Acta; 1977 Apr; 481(2):420-30. PubMed ID: 857892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the acid denaturation of porcine erythrocyte catalase in relation to its subunit structure.
    Samejima T; Miyahara T; Takeda A; Hachimori A; Hirano K
    J Biochem; 1981 Apr; 89(4):1325-32. PubMed ID: 7251583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An amplified assay for thiols based on reactivation of papain.
    Singh R; Blättler WA; Collinson AR
    Anal Biochem; 1993 Aug; 213(1):49-56. PubMed ID: 8238881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfhydryl reactivity of human erythrocyte superoxide dismutase. On the origin of the unusual spectral properties of the protein when prepared by a procedure utilizing chloroform and ethanol for the precipitation of hemoglobin.
    Briggs RG; Fee JA
    Biochim Biophys Acta; 1978 Nov; 537(1):100-9. PubMed ID: 718975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of chromium(VI) by thiols results in chromium(V) formation, chromium binding to DNA and altered DNA conformation.
    Borges KM; Boswell JS; Liebross RH; Wetterhahn KE
    Carcinogenesis; 1991 Apr; 12(4):551-61. PubMed ID: 1849467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiols as myeloperoxidase-oxidase substrates.
    Svensson BE
    Biochem J; 1988 Jul; 253(2):441-9. PubMed ID: 2845919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the characterization of porcine erythrocyte catalase and its disulfide-linked dimer.
    Takeda A; Samejima T
    J Biochem; 1977 Oct; 82(4):1025-33. PubMed ID: 924978
    [No Abstract]   [Full Text] [Related]  

  • 15. Neutral thiol as a proximal ligand to ferrous heme iron: implications for heme proteins that lose cysteine thiolate ligation on reduction.
    Perera R; Sono M; Sigman JA; Pfister TD; Lu Y; Dawson JH
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3641-6. PubMed ID: 12655049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalase-peroxidase active site restructuring by a distant and "inactive" domain.
    Baker RD; Cook CO; Goodwin DC
    Biochemistry; 2006 Jun; 45(23):7113-21. PubMed ID: 16752901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin catalyzes CoA degradation and thiol addition to flavonoids.
    Nagakubo T; Kumano T; Hashimoto Y; Kobayashi M
    Sci Rep; 2018 Jan; 8(1):1282. PubMed ID: 29352172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme-linked spectral changes of the protein moiety of hemoproteins in the near ultraviolet region.
    Horie S; Hasumi H; Takizawa N
    J Biochem; 1985 Jan; 97(1):281-93. PubMed ID: 2987198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double edge redox-implications for the interaction between endogenous thiols and copper ions: In vitro studies.
    Carrasco-Pozo C; Aliaga ME; Olea-Azar C; Speisky H
    Bioorg Med Chem; 2008 Nov; 16(22):9795-803. PubMed ID: 18926709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways of peroxynitrite oxidation of thiol groups.
    Quijano C; Alvarez B; Gatti RM; Augusto O; Radi R
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):167-73. PubMed ID: 9078258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.