These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7358671)

  • 1. Thermodynamic aspects of translocation of reducing equivalents by mitochondria.
    Davis EJ; Bremer J; Akerman KE
    J Biol Chem; 1980 Mar; 255(6):2277-83. PubMed ID: 7358671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship of the intra- and extramitochondrial adenine nucleotide ratios during synthesis of phosphoenolpyruvate using extramitochondrial ATP.
    Erecińska M; Wilson DF
    J Biol Chem; 1984 Sep; 259(17):10904-6. PubMed ID: 6088521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic aspects of transport of ADP and ATP through the mitochondrial membrane.
    Klingenberg M
    Ciba Found Symp; 1975; (31):105-24. PubMed ID: 238804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cellular redox potential as measured in a steady-state, cell-free system.
    Burat MK; Burat T; Davis-Van Thienen WI; Davis EJ
    Arch Biochem Biophys; 1984 Nov; 235(1):150-8. PubMed ID: 6238571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H+ and cation movements associated with ADP, ATP transport in mitochondria.
    Wulf R; Kaltstein A; Klingenberg M
    Eur J Biochem; 1978 Jan; 82(2):585-92. PubMed ID: 23946
    [No Abstract]   [Full Text] [Related]  

  • 7. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safranine as a probe of the mitochondrial membrane potential.
    Akerman KE; Wikström MK
    FEBS Lett; 1976 Oct; 68(2):191-7. PubMed ID: 976474
    [No Abstract]   [Full Text] [Related]  

  • 9. The ATP-to-oxygen stoichiometries of oxidative phosphorylation by rat liver mitochondria. An analysis of ADP-induced oxygen jumps by linear nonequilibrium thermodynamics.
    Lemasters JJ
    J Biol Chem; 1984 Nov; 259(21):13123-30. PubMed ID: 6548475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Nucleotide control of ionic transport and ATP synthesis in mitochondria].
    Dragunova SF; Novgorodov SA; Sharyshev AA; Iaguzhinskiĭ LS
    Biokhimiia; 1981 Jul; 46(7):1242-8. PubMed ID: 7272353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles.
    Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV
    Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139
    [No Abstract]   [Full Text] [Related]  

  • 13. Cycles in the function of mitochondrial membrane transport systems.
    Lehninger AL; Reynafarje B
    Curr Top Cell Regul; 1981; 18():329-41. PubMed ID: 7273845
    [No Abstract]   [Full Text] [Related]  

  • 14. Control of reversible intracellular transfer of reducing potential.
    Kunz WS; Davis EJ
    Arch Biochem Biophys; 1991 Jan; 284(1):40-6. PubMed ID: 1824912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the beta-hydroxybutyrate/acetoacetate ratio on the redox states of mitochondrial NAD(P) and cytochrome c systems, extramitochondrial ATP/ADP ratio and the respiration of isolated liver mitochondria in the resting state.
    Schönfeld P; Bohnensack R; Böhme G; Kunz W
    Biomed Biochim Acta; 1983; 42(1):3-13. PubMed ID: 6309158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the intramitochondrial adenine nucleotides as intermediates in the uncoupler-induced hydrolysis of extramitochondrial ATP.
    Out TA; Valeton E; Kemp A
    Biochim Biophys Acta; 1976 Sep; 440(3):697-710. PubMed ID: 134745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and adenine nucleotide control of mitochondrial permeability transition.
    Kantrow SP; Tatro LG; Piantadosi CA
    Free Radic Biol Med; 2000 Jan; 28(2):251-60. PubMed ID: 11281292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-equilibrium thermodynamics of oxidative phosphorylation by inverted inner membrane vesicles of rat liver mitochondria.
    Lemasters JJ; Billica WH
    J Biol Chem; 1981 Dec; 256(24):12949-57. PubMed ID: 7309743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of precursors of biosyntheses on the energy metabolism of the liver cell.
    Letko G; Küster U; Pohl K
    Biomed Biochim Acta; 1983; 42(4):323-33. PubMed ID: 6312977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.