These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7358923)

  • 1. Bioorganotin chemistry. Microsomal monooxygenase and mammalian metabolism of cyclohexyltin compounds including the miticide cyhexatin.
    Kimmel EC; Casida JE; Fish RH
    J Agric Food Chem; 1980; 28(1):117-22. PubMed ID: 7358923
    [No Abstract]   [Full Text] [Related]  

  • 2. Bioorganotin chemistry. Metabolism of organotin compounds in microsomal monooxygenase systems and in mammals.
    Kimmel EC; Fish RH; Casida JE
    J Agric Food Chem; 1976; 25(1):1-9. PubMed ID: 12202
    [No Abstract]   [Full Text] [Related]  

  • 3. Bioorganotin chemistry: a commentary on the reactions of organotin compounds with a cytochrome P-450 dependent monooxygenase enzyme system.
    Fish RH
    Neurotoxicology; 1984; 5(2):159-61. PubMed ID: 6542186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of prostaglandin A1 by hepatic microsomal monooxygenase P-450 system in the guinea pig and rat.
    Kupfer D; Navarro J
    Life Sci; 1976 Mar; 18(5):507-13. PubMed ID: 1256251
    [No Abstract]   [Full Text] [Related]  

  • 5. [Recent progress in the study of analytical methods, toxicity, metabolism and health effects of organotin compounds].
    Wada O; Manabe S; Iwai H; Arakawa Y
    Sangyo Igaku; 1982 Jan; 24(1):24-54. PubMed ID: 6752493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of hepatotoxicity and metabolism of butyltin compounds in the liver of mice, rats and guinea pigs.
    Ueno S; Kashimoto T; Susa N; Ishii M; Chiba T; Mutoh K; Hoshi F; Suzuki T; Sugiyama M
    Arch Toxicol; 2003 Mar; 77(3):173-81. PubMed ID: 12632258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of tributyltin and triphenyltin by Dall's porpoise hepatic microsomes.
    Yang J; Oshima Y; Sei I; Miyazaki N
    Chemosphere; 2009 Aug; 76(7):1013-5. PubMed ID: 19515398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of methylmercury with special reference to hepatic microsomal cytochrome P-450 linked monooxygenase system.
    Nakayama M
    Kumamoto Med J; 1976 Sep; 29(3):95-109. PubMed ID: 1011794
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes.
    Ohhira S; Watanabe M; Matsui H
    Arch Toxicol; 2003 Mar; 77(3):138-44. PubMed ID: 12632253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of NADH in uncoupled microsomal monoxygenations.
    Staudt H; Lichtenberger F; Ullrich V
    Eur J Biochem; 1974 Jul; 46(1):99-106. PubMed ID: 4153145
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on N-demethylation of methamphetamine by means of purified guinea-pig liver flavin-containing monooxygenase.
    Baba T; Yamada H; Oguri K; Yoshimura H
    Biochem Pharmacol; 1987 Dec; 36(23):4171-3. PubMed ID: 3689443
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolism of phosphorus-containing compounds by pig liver microsomal FAD-containing monooxygenase.
    Smyser BP; Hodgson E
    Biochem Pharmacol; 1985 Apr; 34(8):1145-50. PubMed ID: 3994737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereospecificity in the metabolism of the chiral isomers of fonofos by mouse liver microsomal mixed function oxidase.
    Lee PW; Allahyari R; Fukuto TR
    Biochem Pharmacol; 1976 Dec; 25(23):2671-4. PubMed ID: 985587
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparative metabolism of dieldrin in the rat (CFE) and in two strains of mouse (CF1 and LACG).
    Hutson DH
    Food Cosmet Toxicol; 1976 Dec; 14(6):577-91. PubMed ID: 1017774
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolism of O-ethyl S,S-dipropyl phosphorodithioate in rats and liver microsomal systems.
    Iqbal ZM; Menzer RE
    Biochem Pharmacol; 1972 Jun; 21(11):1569-84. PubMed ID: 4646785
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative metabolism of 2,2,5-endo,6-exo,8,9,10-heptachlorobornane and toxaphene in six mammalian species and chickens.
    Saleh MA; Skinner RJ; Casida JE
    J Agric Food Chem; 1979; 27(4):731-7. PubMed ID: 117038
    [No Abstract]   [Full Text] [Related]  

  • 17. Cyhexatin and fenbutatin-oxide resistance in Pacific spider mite (Acari: Tetranychidae): stability and mode of inheritance.
    Hoy MA; Conley J; Robinson W
    J Econ Entomol; 1988 Feb; 81(1):57-64. PubMed ID: 3351085
    [No Abstract]   [Full Text] [Related]  

  • 18. Microsomal oxidation of thiobenzamide. A photometric assay for the flavin-containing monooxygenase.
    Cashman JR; Hanzlik RP
    Biochem Biophys Res Commun; 1981 Jan; 98(1):147-53. PubMed ID: 7213381
    [No Abstract]   [Full Text] [Related]  

  • 19. Tissue- and species-dependent expression of multiple forms of mammalian microsomal flavin-containing monooxygenase.
    Tynes RE; Philpot RM
    Mol Pharmacol; 1987 Jun; 31(6):569-74. PubMed ID: 3600601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a high-active microsomal monooxygenase system reconstituted by means of self-assembly.
    Tsyrlov IB; Mishin VM; Gromova OA; Zakharova NE; Lyakhovich VV
    Biochem Pharmacol; 1977 Nov; 26(21):2061-3. PubMed ID: 921816
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.