These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7359899)

  • 1. Micromechanical bonding at a porous surface structured implant interface-the effect on implant stressing.
    Pilliar RM; Bratina WJ
    J Biomed Eng; 1980 Jan; 2(1):49-53. PubMed ID: 7359899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The load carrying and fatigue properties of the stem-cement interface with smooth and porous coated femoral components.
    Manley MT; Stern LS; Gurtowski J
    J Biomed Mater Res; 1985; 19(5):563-75. PubMed ID: 4066729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cement-mantle thickness affects cement strains in total hip replacement.
    Fisher DA; Tsang AC; Paydar N; Milionis S; Turner CH
    J Biomech; 1997; 30(11-12):1173-7. PubMed ID: 9456387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femoral component loosening in hip arthroplasty. Cadaver study of subsidence and hoop strain.
    Manley MT; Stern LS; Kotzar G; Stulberg BN
    Acta Orthop Scand; 1987 Oct; 58(5):485-90. PubMed ID: 3425274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of stem stress in total hip replacement on prosthesis and cement stiffness.
    Yettram AL; Wright KW
    J Biomed Eng; 1980 Jan; 2(1):54-9. PubMed ID: 7359900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of design parameters on calcar stresses following femoral head arthroplasty.
    Cook SD; Klawitter JJ; Weinstein AM
    J Biomed Mater Res; 1980 Mar; 14(2):133-44. PubMed ID: 7358741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of variation of cement thickness on bone and cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    Iowa Orthop J; 1993; 13():155-9. PubMed ID: 7820736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components.
    Harrigan TP; Harris WH
    J Biomech; 1991; 24(11):1047-58. PubMed ID: 1761581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cemented femoral stem performance. Effects of proximal bonding, geometry, and neck length.
    Chang PB; Mann KA; Bartel DL
    Clin Orthop Relat Res; 1998 Oct; (355):57-69. PubMed ID: 9917591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of warfarin on the attachment of bone to hydroxyapatite-coated and uncoated porous implants.
    Callahan BC; Lisecki EJ; Banks RE; Dalton JE; Cook SD; Wolff JD
    J Bone Joint Surg Am; 1995 Feb; 77(2):225-30. PubMed ID: 7844128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants.
    Lennon AB; Prendergast PJ
    J Biomech Eng; 2001 Dec; 123(6):623-8. PubMed ID: 11783734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of material properties of femoral hip components on bone remodeling.
    Weinans H; Huiskes R; Grootenboer HJ
    J Orthop Res; 1992 Nov; 10(6):845-53. PubMed ID: 1403299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength of cement-metal interfaces in fatigue: comparison of smooth, porous and precoated specimens.
    Davies JP; Harris WH
    Clin Mater; 1993; 12(2):121-6. PubMed ID: 10148341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-coated orthopedic implants with bone cement.
    Park JB; von Recum AF; Gratzick GE
    Biomater Med Devices Artif Organs; 1979; 7(1):41-53. PubMed ID: 454782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; HavlĂ­cek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro characteristics of cemented titanium femoral stems with a smooth surface finish.
    Akiyama H; Yamamoto K; Kaneuji A; Matsumoto T; Nakamura T
    J Orthop Sci; 2013 Jan; 18(1):29-37. PubMed ID: 22945910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component.
    Lewis JL; Askew MJ; Wixson RL; Kramer GM; Tarr RR
    J Bone Joint Surg Am; 1984 Feb; 66(2):280-6. PubMed ID: 6693456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue properties of carbon- and porous-coated Ti-6Al-4V alloy.
    Cook SD; Georgette FS; Skinner HB; Haddad RJ
    J Biomed Mater Res; 1984; 18(5):497-512. PubMed ID: 6736080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.