These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7360323)

  • 1. Lithium and chlorimipramine differentially alter bilateral asymmetry in mesostriatal serotonin metabolites and kinetic conformations of midbrain tryptophan hydroxylase with respect to tetrahydrobiopterin cofactor.
    Knapp S; Mandell AJ
    Neuropharmacology; 1980 Jan; 19(1):1-7. PubMed ID: 7360323
    [No Abstract]   [Full Text] [Related]  

  • 2. Conformational influences on brain tryptophan hydroxylase by submicromolar calcium: opposite effects of equimolar lithium.
    Knapp S; Mandell AJ
    J Neural Transm; 1979; 45(1):1-15. PubMed ID: 469519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regional distribution of hydroxylase cofactor in rat brain.
    Levine RA; Kuhn DM; Lovenberg W
    J Neurochem; 1979 May; 32(5):1575-8. PubMed ID: 35590
    [No Abstract]   [Full Text] [Related]  

  • 4. Cocaine and lithium: neurobiological antagonism in the serotonin biosynthetic system in rat brain.
    Knapp S; Mandell AJ
    Life Sci; 1976 Apr; 18(7):679-83. PubMed ID: 1263750
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of structures of tetrahydropterin cofactors on rat brain tryptophan hydroxylase.
    Kato T; Yamaguchi T; Nagatsu T; Sugimoto T; Matsuura S
    Biochim Biophys Acta; 1980 Feb; 611(2):241-50. PubMed ID: 7357009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium and chlorimipramine differentially alter the stability properties of tryptophan hydroxylase as seen in allosteric and scattering kinetics.
    Knapp S; Mandell AJ
    Psychiatry Res; 1983 Apr; 8(4):311-23. PubMed ID: 6576397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrahydrobiopterin in striatum: localization in dopamine nerve terminals and role in catecholamine synthesis.
    Levine RA; Miller LP; Lovenberg W
    Science; 1981 Nov; 214(4523):919-21. PubMed ID: 6117945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biopterin. VII. Inhibition of synthesis of reduced biopterins and its bearing on the function of cerebral tryptophan-5-hydroxylase in vivo.
    Gál EM; Whitacre DH
    Neurochem Res; 1981 Mar; 6(3):233-41. PubMed ID: 7279104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neurobiological model for the symmetrical prophylactic action of lithium in bipolar affective disorder.
    Mandell AJ; Knapp S
    Pharmakopsychiatr Neuropsychopharmakol; 1976 May; 9(3):116-26. PubMed ID: 988597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripherally administered tetrahydrobiopterin increases in vivo tryptophan hydroxylase activity in the striatum after transplantation of fetal ventral mesencephalon in six hydroxydopamine lesioned rats.
    Ishida Y; Todaka K; Kuwahara I; Hashiguchi H; Ishizuka Y; Nakane H; Mitsuyama Y
    Neurosci Lett; 1998 Aug; 253(1):45-8. PubMed ID: 9754801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin on the extracellular levels of dopamine and serotonin in the rat striatum: a microdialysis study with tyrosine or tryptophan infusion.
    Tsukada H; Lindner KJ; Hartvig P; Långström B
    Brain Res; 1994 Jan; 635(1-2):59-67. PubMed ID: 7909718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidepressant action of lithium in behavioral despair test.
    Eroğlu L; Hizal A
    Pol J Pharmacol Pharm; 1987; 39(6):667-73. PubMed ID: 2460846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scattering kinetics in a complex tryptophan hydroxylase preparation from rat brainstem raphe nuclei: statistical evidence that the lithium-induced sigmoid velocity function reflects two states of available catalytic potential.
    Knapp S; Mandell AJ
    J Neural Transm; 1983; 58(3-4):169-82. PubMed ID: 6663300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinetic scattering approach to the non-linear instabilities of rat brain tyrosine hydroxylase preparations at several levels of tetrahydrobiopterin cofactor demonstrates evolutionary behavior characteristic of global dynamical systems.
    Russo PV; Mandell AJ
    Brain Res; 1984 May; 299(2):313-22. PubMed ID: 6145494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short- and long-term lithium administration: effects on the brain's serotonergic biosynthetic systems.
    Knapp S; Mandell AJ
    Science; 1973 May; 180(4086):645-7. PubMed ID: 4700609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of serotonin biosynthesis in brain: role of the high affinity uptake of tryptophan into serotonergic neurons.
    Mandell AJ; Knapp S
    Fed Proc; 1977 Jul; 36(8):2142-8. PubMed ID: 872948
    [No Abstract]   [Full Text] [Related]  

  • 17. Kinetic properties of tyrosine hydroxylase with natural tetrahydrobiopterin as cofactor.
    Oka K; Kato T; Sugimoto T; Matsuura S; Nagatsu T
    Biochim Biophys Acta; 1981 Sep; 661(1):45-53. PubMed ID: 6117320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogenesis of monoamine-synthesizing enzyme activities and biopterin levels in rat brain or salivary glands, and the effects of thyroxine administration.
    Kato T; Yamaguchi T; Togari A; Nagatsu T; Yajima T; Maeda N; Kumegawa M
    J Neurochem; 1982 Apr; 38(4):896-901. PubMed ID: 6121004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain differences in kinetic and thermal stability of two mouse brain tryptophan hydroxylase activities.
    Knapp S; Mandell AJ; Russo PV; Vitto A; Stewart KD
    Brain Res; 1981 Dec; 230(1-2):317-36. PubMed ID: 6172184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine-releasing action of 6R-L-erythro-tetrahydrobiopterin: analysis of its action site using sepiapterin.
    Koshimura K; Miwa S; Watanabe Y
    J Neurochem; 1994 Aug; 63(2):649-54. PubMed ID: 7518501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.