These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 7360524)

  • 1. Cystinuria: reduced lysine permeability at the brush border of intestinal membrane cells.
    Coicadan L; Heyman M; Grasset E; Desjeux JF
    Pediatr Res; 1980 Feb; 14(2):109-12. PubMed ID: 7360524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystine fluxes across the isolated jejunal epithelium in cystinuria: increased efflux permeability at the luminal membrane.
    Desjeux JF; Vonlanthen M; Dumontier AM; Simell O; Legrain M
    Pediatr Res; 1987 May; 21(5):477-81. PubMed ID: 3588086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jejunal and ileal absorption of dibasic amino acids and an arginine-containing dipeptide in cystinuria.
    Silk DB; Perrett D; Clark ML
    Gastroenterology; 1975 Jun; 68(6):1426-32. PubMed ID: 1132625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption of dipeptides in normal and cystinuric subjects.
    Hellier MD; Perrett D; Holdsworth CD; Thirumalai C
    Gut; 1971 Jun; 12(6):496-7. PubMed ID: 5090880
    [No Abstract]   [Full Text] [Related]  

  • 5. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium transport in the hen lower intestine. induction of sodium sites in the brush border by a low sodium diet.
    Bindslev N
    J Physiol; 1979 Mar; 288():449-66. PubMed ID: 469729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine fluxes across the jejunal epithelium in lysinuric protein intolerance.
    Desjeux JF; Simell RO; Dumontier AM; Perheentupa J
    J Clin Invest; 1980 Jun; 65(6):1382-7. PubMed ID: 6773985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystinuria phenotyping by oral lysine and arginine loading.
    de Sanctis L; Bonetti G; Bruno M; De Luca F; Bisceglia L; Palacin M; Dianzani I; Ponzone A
    Clin Nephrol; 2001 Dec; 56(6):467-74. PubMed ID: 11770798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal depeptide transport in normal and cystinuric subjects.
    Hellier MD; Holdsworth CD; Perrett D; Thirumalai C
    Clin Sci; 1972 Nov; 43(5):659-68. PubMed ID: 5083941
    [No Abstract]   [Full Text] [Related]  

  • 10. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane.
    Zelikovic I; Budreau-Patters A
    Mol Genet Metab; 1999 Jul; 67(3):236-47. PubMed ID: 10381331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-dependent L-lactate uptake by bovine intestinal brush border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1988 Dec; 71(12):3267-73. PubMed ID: 3235729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between transport of D-xylose and other monosaccharides in jejunal mucosa of children.
    Heyman M; Desjeux JF; Grasset E; Dumontier AM; Lestradet H
    Gastroenterology; 1981 Apr; 80(4):758-62. PubMed ID: 7202947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na-dependent transport of S-(1,2-dichlorovinyl)-L-cysteine by renal brush-border membrane vesicles.
    Wright SH; Wunz TM; North J; Stevens JL
    J Pharmacol Exp Ther; 1998 Apr; 285(1):162-9. PubMed ID: 9536006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Quantitative relationship between the monosaccharide induced change in ion transport and the monosaccharide accumulation in the rat jejunum].
    Remke H; Mühle W; Mothes T; Müller F
    Acta Biol Med Ger; 1977; 36(1):7-15. PubMed ID: 878746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine transport across rat jejunum: distribution between the transcellular and the paracellular routes.
    Munck BG; Rasmussen SN
    J Physiol; 1979 Jun; 291():291-303. PubMed ID: 480216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased uptake of L-cystine by duodenal brush border membrane vesicles from patients with cystinuria.
    Furlong TJ; Stiel D
    Aust N Z J Med; 1993 Jun; 23(3):258-63. PubMed ID: 8352700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible sodium and D-glucose cotransport in isolated jejunal epithelium of children.
    Grasset E; Heyman M; Dumontier AM; Lestradet H; Desjeux JF
    Pediatr Res; 1979 Nov; 13(11):1240-6. PubMed ID: 514689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal transport of cystine and cysteine in man: evidence for separate mechanisms.
    Rosenberg LE; Crawhall JC; Segal S
    J Clin Invest; 1967 Jan; 46(1):30-4. PubMed ID: 6018747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small intestinal glucose absorption in cystic fibrosis: a study in human and transgenic DeltaF508 cystic fibrosis mouse tissues.
    Hardcastle J; Harwood MD; Taylor CJ
    J Pharm Pharmacol; 2004 Mar; 56(3):329-38. PubMed ID: 15025858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ouabain-insensitive active sodium transport in rat jejunum: evidence from ATPase activities, Na uptake by basolateral membrane vesicles and in vitro transintestinal transport.
    Tosco M; Orsenigo MN; Esposito G; Faelli A
    Cell Biochem Funct; 1988 Jul; 6(3):155-64. PubMed ID: 2970332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.