These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7360792)

  • 1. Comparison of the microdosimetric event-size method and the twin-chamber method of separating dose into neutron and gamma components.
    Stinchcomb TG; Kuchnir FT; Skaggs LS
    Phys Med Biol; 1980 Jan; 25(1):51-64. PubMed ID: 7360792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation of radiation quality average parameters in neutron-gamma radiation fields with the high-pressure ionization chamber: theory and practice.
    Makrigiorgos GM
    Radiat Res; 1989 Jun; 118(3):387-400. PubMed ID: 2727266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron spectra from 35 and 46 MeV protons, 16 and 28 MeV deuterons, and 44 MeV 3He ions on thick beryllium.
    Waterman FM; Kuchnir FT; Skaggs LS; Kouzes RT; Moore WH
    Med Phys; 1979; 6(5):432-5. PubMed ID: 492078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium.
    Fidorra J; Booz J
    Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EuTEPC: measurements in gamma and neutron fields.
    Moro D; Chiriotti S
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):266-70. PubMed ID: 25877529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy dependence of the neutron sensitivity of C--CO2, Mg--Ar and TE--TE ionisation chambers.
    Waterman FM; Kuchnir FT; Skaggs LS; Kouzes RT; Moore WH
    Phys Med Biol; 1979 Jul; 24(4):721-33. PubMed ID: 472009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
    Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S
    Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum.
    Takada M; Mihara E; Sasaki M; Nakamura T; Honma T; Kono K; Fujitaka K
    Radiat Prot Dosimetry; 2004; 110(1-4):601-6. PubMed ID: 15353715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DISCRIMINATION METHOD FOR GAMMA RAY DOSES IN NEUTRON FIELDS USING AN IONIZATION CHAMBER WITH ATTENUATION FILTERS.
    Ogawara R; Suda M; Hagihara T; Kodaira S; Hamano T
    Radiat Prot Dosimetry; 2019 May; 183(1-2):280-284. PubMed ID: 30726975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of PIN photodiode in microdosimetry.
    Kadachi A; Waheed A; Obeid M
    Health Phys; 1994 May; 66(5):577-80. PubMed ID: 8175367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdosimetric investigation of a fast neutron radiobiology facility utilising the d(4)-9Be reaction.
    Waker AJ; Maughan RL
    Phys Med Biol; 1986 Nov; 31(11):1281-90. PubMed ID: 3786413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdosimetric Measurements in Gamma and neutron Fields with a Tissue Equivalent Proportional Counter Based on a Gas Electron Multiplier.
    De Nardo L; Dal Corso F; Pegoraro M
    Radiat Prot Dosimetry; 2017 Jun; 175(2):260-266. PubMed ID: 27881795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of low-pressure tissue equivalent proportional counters for the dosimetry of neutron beams used in BNCT and BNCEFNT.
    Kota C; Maughan RL; Tattam D; Beynon TD
    Med Phys; 2000 Mar; 27(3):535-48. PubMed ID: 10757605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. INVESTIGATION OF APPLICABILITY OF PURE PROPANE GAS FOR MICRODOSIMETRY AT NEUTRON FIELDS: A MONTE CARLO STUDY.
    Chattaraj A; Selvam TP; Datta D
    Radiat Prot Dosimetry; 2019 Nov; 185(1):74-86. PubMed ID: 30576567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of finite size of ion chambers used for neutron dosimetry.
    Zoetelief J; Engels AC; Broerse JJ; Mijnheer BJ
    Phys Med Biol; 1980 Nov; 25(6):1121-31. PubMed ID: 7208625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A liquid ionisation chamber for neutron dosimetry.
    Chu JC; Grant WH; Almond PR
    Phys Med Biol; 1980 Nov; 25(6):1133-48. PubMed ID: 7208626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validating a MCNPX model of Mg(Ar) and TE(TE) ionisation chambers exposed to 60CO gamma rays.
    Roca A; Nievaart VA; Moss RL; Stecher-Rasmussen F; Zamfir NV
    Radiat Prot Dosimetry; 2008; 129(4):365-71. PubMed ID: 18086690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdosimetric specification of the radiation quality of a d(48.5)+Be fast neutron therapy beam produced by a superconducting cyclotron.
    Kota C; Maughan RL
    Med Phys; 1996 Sep; 23(9):1591-9. PubMed ID: 8892257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.
    Waker AJ; Aslam
    Radiat Res; 2011 Jun; 175(6):806-13. PubMed ID: 21476858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.