These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7361000)

  • 1. Nuclear activation of carbon tetrachloride and chloroform.
    Diaz Gomez MI; Castro JA
    Res Commun Chem Pathol Pharmacol; 1980 Jan; 27(1):191-4. PubMed ID: 7361000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo.
    Uehleke H; Werner T
    Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of O2 tension on the bioactivation and metabolism of aliphatic halides by primary rat-hepatocyte cultures.
    DiRenzo AB; Gandolfi AJ; Sipes IG; Brendel K; Byard JL
    Xenobiotica; 1984 Jul; 14(7):521-5. PubMed ID: 6506764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of carbon tetrachloride and lipid peroxidation promotion by liver nuclear preparations from different animal species.
    Castro GD; Díaz Gómez MI; Castro JA
    Cancer Lett; 1990 Aug; 53(1):9-15. PubMed ID: 2397486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of 14 C-carbon tetrachloride to microsomal proteins in vitro and formation of CHC1 3 by reduced liver microsomes.
    Uehleke H; Hellmer KH; Tabarelli S
    Xenobiotica; 1973 Jan; 3(1):1-11. PubMed ID: 4144825
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450.
    Ahr HJ; King LJ; Nastainczyk W; Ullrich V
    Biochem Pharmacol; 1980 Oct; 29(20):2855-61. PubMed ID: 7437085
    [No Abstract]   [Full Text] [Related]  

  • 7. Relationships between the pharmacokinetics of carbon tetrachloride conversion to carbon dioxide and chloroform and liver injury.
    Reynolds ES; Treinen RJ; Farrish HH; Moslen MT
    Arch Toxicol Suppl; 1984; 7():303-6. PubMed ID: 6440512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physicochemical factors in the binding of halogenated hydrocarbons to liver microsomes].
    Windorfer A; Stier A
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1969; 263(1):258. PubMed ID: 5804280
    [No Abstract]   [Full Text] [Related]  

  • 9. The formation of diglutathionyl dithiocarbonate as a metabolite of chloroform, bromotrichloromethane, and carbon tetrachloride.
    Pohl LR; Branchflower RV; Highet RJ; Martin JL; Nunn DS; Monks TJ; George JW; Hinson JA
    Drug Metab Dispos; 1981; 9(4):334-9. PubMed ID: 6114833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in the level of CCl4 and its toxic radical .CCl3 in the blood and liver in rats of both sexes].
    Smejkalová J; Obrsál J; Tusl M; Simek J
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove Suppl; 1985; 28(3-4):391-8. PubMed ID: 3879924
    [No Abstract]   [Full Text] [Related]  

  • 11. 2-Propanol treatment induces selectively the metabolism of carbon tetrachloride to phosgene. Implications for carbon tetrachloride hepatotoxicity.
    Harris RN; Anders MW
    Drug Metab Dispos; 1981; 9(6):551-6. PubMed ID: 6120815
    [No Abstract]   [Full Text] [Related]  

  • 12. A pharmacokinetic model of anaerobic in vitro carbon tetrachloride metabolism.
    Andersen NJ; Waller CL; Adamovic JB; Thompson DJ; Allis JW; Andersen ME; Simmons JE
    Chem Biol Interact; 1996 Jun; 101(1):13-31. PubMed ID: 8665616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon tetrachloride activation by highly purified liver mitochondrial preparations.
    de Castro CR; Bernacchi AS; Villarruel MC; Fernández G; Castro JA
    Agents Actions; 1984 Dec; 15(5-6):664-7. PubMed ID: 6099695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical, biochemical and toxicological differences between carbon tetrachloride and chloroform. A critical review of recent investigations of these compounds in mammals.
    Hathway DE
    Arzneimittelforschung; 1974 Feb; 24(2):173-6. PubMed ID: 4364985
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanisms of chloroform and carbon tetrachloride toxicity in primary cultured mouse hepatocytes.
    Ruch RJ; Klaunig JE; Schultz NE; Askari AB; Lacher DA; Pereira MA; Goldblatt PJ
    Environ Health Perspect; 1986 Nov; 69():301-5. PubMed ID: 3816733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fasting increases the concentrations of carbon tetrachloride and of its metabolite chloroform in the liver of mice.
    Pentz R; Strubelt O
    Toxicol Lett; 1983 May; 16(3-4):231-4. PubMed ID: 6857718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon tetrachloride promoted malondialdehyde formation in liver microsomal and nuclear preparations from Sprague Dawley or Osborne Mendel male rats.
    Fanelli SL; Castro JA
    Res Commun Chem Pathol Pharmacol; 1993 Nov; 82(2):233-6. PubMed ID: 8303091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of carbonyl chloride in carbon tetrachloride metabolism by rat liver in vitro.
    Shah H; Hartman SP; Weinhouse S
    Cancer Res; 1979 Oct; 39(10):3942-7. PubMed ID: 476631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of benznidazole reactive metabolites with rat liver deoxyribonucleic acid and nuclear proteins.
    Gorla N; Díaz Gómez MI; Castro JA
    Arch Int Pharmacodyn Ther; 1986 Mar; 280(1):22-31. PubMed ID: 3718078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P-450.
    Sipes IG; Krishna G; Gillette JR
    Life Sci; 1977 May; 20(9):1541-8. PubMed ID: 17803
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.