These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 7361198)

  • 61. [Experimental studies on the accuracy of mineral content assessment in spongiosa bone using quantitative CT (single energy measurement)].
    Rohloff R; Hitzler H; Arndt W; Frey KW
    Rofo; 1985 Dec; 143(6):692-7. PubMed ID: 3001863
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Age- and gender-related differences in vertebral bone mass, density, and strength.
    Ebbesen EN; Thomsen JS; Beck-Nielsen H; Nepper-Rasmussen HJ; Mosekilde L
    J Bone Miner Res; 1999 Aug; 14(8):1394-403. PubMed ID: 10457272
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Strain distribution in the lumbar vertebrae under different loading configurations.
    Cristofolini L; Brandolini N; Danesi V; Juszczyk MM; Erani P; Viceconti M
    Spine J; 2013 Oct; 13(10):1281-92. PubMed ID: 23958297
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lower vertebral bone density in male long distance runners.
    Bilanin JE; Blanchard MS; Russek-Cohen E
    Med Sci Sports Exerc; 1989 Feb; 21(1):66-70. PubMed ID: 2927303
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Injuries in adolescent spine exposed to compressive loads: an experimental cadaveric study.
    Karlsson L; Lundin O; Ekström L; Hansson T; Swärd L
    J Spinal Disord; 1998 Dec; 11(6):501-7. PubMed ID: 9884295
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Appendicular and vertebral bone mass in ankylosing spondylitis. A comparison of plain radiographs with single- and dual-photon absorptiometry and with quantitative computed tomography.
    Devogelaer JP; Maldague B; Malghem J; Nagant de Deuxchaisnes C
    Arthritis Rheum; 1992 Sep; 35(9):1062-7. PubMed ID: 1418022
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Method of x-ray osteophotometry of the lumbar region of the spinal column].
    Borisevich AI; Aristarkhov VI; Stepanov OI
    Arkh Anat Gistol Embriol; 1976; 71(11):108-13. PubMed ID: 1026225
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Assessment of bone quantity and distribution in adult lumbar scoliosis: new dual-energy x-ray absorptiometry methodology and analysis.
    Rumancik S; Routh RH; Pathak RD; Burshell AL; Nauman EA
    Spine (Phila Pa 1976); 2005 Feb; 30(4):434-9. PubMed ID: 15706341
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Calcaneus as a site for assessment of bone mineral density: evaluation in cadavers and healthy volunteers.
    Yamada M; Ito M; Hayashi K; Nakamura T
    AJR Am J Roentgenol; 1993 Sep; 161(3):621-7. PubMed ID: 8352120
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A study of the compressive properties of lumbar vertebral trabeculae: effects of tissue characteristics.
    Hansson TH; Keller TS; Panjabi MM
    Spine (Phila Pa 1976); 1987; 12(1):56-62. PubMed ID: 3576357
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Age changes in the bone mineral of the lumbar spine in normal women.
    Hansson T; Roos B
    Calcif Tissue Int; 1986 May; 38(5):249-51. PubMed ID: 3087597
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rates of bone loss in the appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause.
    Riggs BL; Wahner HW; Melton LJ; Richelson LS; Judd HL; Offord KP
    J Clin Invest; 1986 May; 77(5):1487-91. PubMed ID: 3700651
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Precise measurement of vertebral mineral content using computed tomography.
    Cann CE; Genant HK
    J Comput Assist Tomogr; 1980 Aug; 4(4):493-500. PubMed ID: 7391292
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Physical and mechanical properties of calf lumbosacral trabecular bone.
    Swartz DE; Wittenberg RH; Shea M; White AA; Hayes WC
    J Biomech; 1991; 24(11):1059-68. PubMed ID: 1761582
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dual photon absorptiometry of the spine with a low activity source of gadolinium 153.
    Tothill P; Smith MA; Sutton D
    Br J Radiol; 1983 Nov; 56(671):829-35. PubMed ID: 6626873
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bone mineral content of the spine with dual photon absorptiometry: normalization of the values.
    Praet JP; Jonckheer MH; Reychler R; Verbruggen LA
    Nucl Med Commun; 1986 Oct; 7(10):761-70. PubMed ID: 3808495
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bone mineral density variations along the lumbosacral spine.
    Lu WW; Zheng Y; Holmes A; Zhu Q; Luk KD; Zhong S; Leong JC
    Clin Orthop Relat Res; 2000 Sep; (378):255-63. PubMed ID: 10987001
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bone mineral in lumbar spine, femoral neck and femoral shaft measured by dual photon absorptiometry with 153-gadolineum in prednisone treatment.
    Schaadt O; Bohr H
    Adv Exp Med Biol; 1984; 171():201-8. PubMed ID: 6720459
    [No Abstract]   [Full Text] [Related]  

  • 79. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine.
    Shih TT; Chang CJ; Hsu CY; Wei SY; Su KC; Chung HW
    Spine (Phila Pa 1976); 2004 Dec; 29(24):2844-50. PubMed ID: 15599288
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bone mineral mass in males and females with and without Down syndrome.
    Baptista F; Varela A; Sardinha LB
    Osteoporos Int; 2005 Apr; 16(4):380-8. PubMed ID: 15365695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.