These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7362243)

  • 1. Thermal stabilities of membrane-bound, solubilized, and artificially immobilized hydrogenase from Chromatium vinosum.
    Klibanov AM; Kaplan NO; Kamen MD
    Arch Biochem Biophys; 1980 Feb; 199(2):545-9. PubMed ID: 7362243
    [No Abstract]   [Full Text] [Related]  

  • 2. Chromatium hydrogenase.
    Kakuno T; Kaplan NO; Kamen MD
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):861-3. PubMed ID: 265580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and stability of hydrogenase from Chromatium.
    Strekas T; Antanaitis BC; Krasna AI
    Biochim Biophys Acta; 1980 Nov; 616(1):1-9. PubMed ID: 6254569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and catalytic properties of hydrogenase from Chromatium.
    Gitlitz PH; Krasna AI
    Biochemistry; 1975 Jun; 14(12):2561-8. PubMed ID: 238560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the properties of two hydrogenases from the photosynthetic bacterium Chromatium vinosum.
    Serra JL; Llama MJ; Hall DO
    Arch Biochem Biophys; 1984 Oct; 234(1):73-81. PubMed ID: 6385861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilization and properties of the hydrogenase of Chromatium.
    Feigenblum E; Krasna AI
    Biochim Biophys Acta; 1970 Feb; 198(2):157-64. PubMed ID: 4313527
    [No Abstract]   [Full Text] [Related]  

  • 7. Chromatium sulfite reductase. I. Characterization of thiosulfate-forming activity at the cell extract level.
    Kobayashi K; Katsura E; Kondo T; Ishimoto M
    J Biochem; 1978 Nov; 84(5):1209-15. PubMed ID: 730752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monovalent nickel in hydrogenase from Chromatium vinosum. Light sensitivity and evidence for direct interaction with hydrogen.
    van der Zwaan JW; Albracht SP; Fontijn RD; Slater EC
    FEBS Lett; 1985 Jan; 179(2):271-7. PubMed ID: 2981705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-stable hydrogenase and assay.
    Krasna AI
    Methods Enzymol; 1978; 53():296-314. PubMed ID: 713840
    [No Abstract]   [Full Text] [Related]  

  • 10. Distinct redox behaviour of prosthetic groups in ready and unready hydrogenase from Chromatium vinosum.
    Coremans JM; van der Zwaan JW; Albracht SP
    Biochim Biophys Acta; 1992 Feb; 1119(2):157-68. PubMed ID: 1540647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of two hydrogenase activities in Chromatium.
    Llama MJ; Serra JL; Rao KK; Hall DO
    Eur J Biochem; 1981; 114(1):89-96. PubMed ID: 7011805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 17O2 and 13CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum.
    van der Zwaan JW; Coremans JM; Bouwens EC; Albracht SP
    Biochim Biophys Acta; 1990 Nov; 1041(2):101-10. PubMed ID: 2176104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the redox potential on the activity of Clostridium pasteurianum and Chromatium hydrogenases.
    Fernandez VM; Munilla R; Ballesteros A
    Arch Biochem Biophys; 1982 Apr; 215(1):129-35. PubMed ID: 7046637
    [No Abstract]   [Full Text] [Related]  

  • 14. Properties of the monomeric and dimeric forms of Chromatium hydrogenase [proceedings].
    Serra JL; Llama MJ; Rao KK; Hall DO
    Biochem Soc Trans; 1979 Oct; 7(5):1119-20. PubMed ID: 510724
    [No Abstract]   [Full Text] [Related]  

  • 15. Redox potentials of flavocytochromes c from the phototrophic bacteria, Chromatium vinosum and Chlorobium thiosulfatophilum.
    Meyer TE; Bartsch RG; Caffrey MS; Cusanovich MA
    Arch Biochem Biophys; 1991 May; 287(1):128-34. PubMed ID: 1654798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification by trinitrobenzenesulfonate of a lipid and proteins of intracytoplasmic membranes isolated from Chromatium vinosum and Azotobacter vinelandii.
    Shimada K; Murata N
    Biochim Biophys Acta; 1976 Dec; 455(3):605-20. PubMed ID: 999930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and purification of two hydrogenase activities in Chromatium: kinetics and subunit analysis [proceedings].
    Llama MJ; Serra JL; Rao KK; Hall DO
    Biochem Soc Trans; 1979 Oct; 7(5):1117-8. PubMed ID: 510723
    [No Abstract]   [Full Text] [Related]  

  • 18. Pre-steady-state kinetics of the reactions of [NiFe]-hydrogenase from Chromatium vinosum with H2 and CO.
    Happe RP; Roseboom W; Albracht SP
    Eur J Biochem; 1999 Feb; 259(3):602-8. PubMed ID: 10092843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum.
    Bagley KA; Van Garderen CJ; Chen M; Duin EC; Albracht SP; Woodruff WH
    Biochemistry; 1994 Aug; 33(31):9229-36. PubMed ID: 8049224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value.
    Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA
    Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.