These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 7364046)

  • 1. Extracellular potassium accumulation in the nervous system.
    Orkand RK
    Fed Proc; 1980 Apr; 39(5):1515-8. PubMed ID: 7364046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astrocyte membrane responses and potassium accumulation during neuronal activity.
    Meeks JP; Mennerick S
    Hippocampus; 2007; 17(11):1100-8. PubMed ID: 17853441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ.
    Chvátal A; Anderová M; Syková E
    J Neurosci Res; 2004 Dec; 78(5):668-82. PubMed ID: 15478195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of the glial cells in the maintenance of the ionic environment of the photoreceptors of the retina of the drone (author's transl)].
    Tsacopoulos M; Coles JA
    Klin Monbl Augenheilkd; 1978 Apr; 172(4):449-51. PubMed ID: 651211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of extracellular potassium concentration in epileptogenesis.
    Pedley TA; Fisher RS; Futamachi KJ; Prince DA
    Fed Proc; 1976 May; 35(6):1254-9. PubMed ID: 816678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I; Heinemann U; Lux HD
    Glia; 1989; 2(1):25-44. PubMed ID: 2523337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do neuronal signals regulate potassium flow in glial cells? Evidence from an invertebrate central nervous system.
    Walz W
    J Neurosci Res; 1982; 7(1):71-9. PubMed ID: 7069800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Reactions of nervous elements to K+ accumulation in the medium and functional potassium feedback at the synapse].
    Matiushkin DP
    Fiziol Zh SSSR Im I M Sechenova; 1976 Dec; 62(12):1834-41. PubMed ID: 1010069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
    Kofuji P; Biedermann B; Siddharthan V; Raap M; Iandiev I; Milenkovic I; Thomzig A; Veh RW; Bringmann A; Reichenbach A
    Glia; 2002 Sep; 39(3):292-303. PubMed ID: 12203395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study.
    Florence G; Dahlem MA; Almeida AC; Bassani JW; Kurths J
    J Theor Biol; 2009 May; 258(2):219-28. PubMed ID: 19490858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic feed-backs mediated by potassium ions.
    Matyushkin DP; Krivoi II; Drabkina TM
    Gen Physiol Biophys; 1995 Oct; 14(5):369-81. PubMed ID: 8786037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium homeostasis in the nervous system of cephalopods and crustacea.
    Pichon Y; Abbott NJ; Lieberman EM; Larmet Y
    J Physiol (Paris); 1987; 82(4):346-56. PubMed ID: 3503934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of potassium dynamics in the central nervous system.
    Odette LL; Newman EA
    Glia; 1988; 1(3):198-210. PubMed ID: 2976039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent enhancement of neuron-glia signaling mediated by increased extracellular K+ accompanying long-term synaptic potentiation.
    Ge WP; Duan S
    J Neurophysiol; 2007 Mar; 97(3):2564-9. PubMed ID: 17035364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.
    Britz FC; Lohr C; Schmidt J; Deitmer JW
    Glia; 2002 May; 38(3):215-27. PubMed ID: 11968059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of a constant brain extracellular potassium.
    Katzman R
    Fed Proc; 1976 May; 35(6):1244-7. PubMed ID: 770198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone.
    Gardner-Medwin AR; Coles JA; Tsacopoulos M
    Brain Res; 1981 Mar; 209(2):452-7. PubMed ID: 6261870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of extracellular potassium in central respiratory control studied in the isolated brainstem-spinal cord preparation of the neonatal rat.
    Okada Y; Kuwana S; Kawai A; Mückenhoff K; Scheid P
    Respir Physiol Neurobiol; 2005 Mar; 146(1):21-32. PubMed ID: 15733776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.