These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 7364046)

  • 21. Effect of the glial envelope on extracellular K(+) diffusion in olfactory glomeruli.
    Goriely AR; Secomb TW; Tolbert LP
    J Neurophysiol; 2002 Apr; 87(4):1712-22. PubMed ID: 11929893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Changes in the extracellular potassium concentration and the slow negative potential in the cerebral cortex].
    Roĭtbak AI; Makhek I; Pavlik V; Bobrov AV; Ocherashvili IV
    Neirofiziologiia; 1980; 12(5):459-63. PubMed ID: 7422035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potassium, neuroglia, and oxidative metabolism in central gray matter.
    Somjen GG; Rosenthal M; Cordingley G; LaManna J; Lothman E
    Fed Proc; 1976 May; 35(6):1266-71. PubMed ID: 177318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech.
    Baylor DA; Nicholls JG
    J Physiol; 1969 Aug; 203(3):555-69. PubMed ID: 5387026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffusion in the slice microenvironment and implications for physiological studies.
    Nicholson C; Hounsgaard J
    Fed Proc; 1983 Sep; 42(12):2865-8. PubMed ID: 6350048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying essential conditions for refractoriness of Leão's spreading depression-computational modeling.
    Teixeira HZ; Almeida AC; Infantosi AF; Rodrigues AM; Costa NL; Duarte MA
    Comput Biol Chem; 2008 Aug; 32(4):273-81. PubMed ID: 18485826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of K+ accumulation removal and high extracellular osmolarity on K+ current in insect axonal membrane.
    Stankiewicz M; Pelhate M; Pancerzyńska I; Zienkiewicz A; Kadziela W
    Acta Neurobiol Exp (Wars); 1996; 56(1):95-102. PubMed ID: 8787216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical responses and K+ activity changes to light in the ocellus of the planarian Dugesia japonica.
    Azuma K; Okazaki Y; Asai K; Iwasaki N
    Comp Biochem Physiol A Physiol; 1994 Nov; 109(3):593-9. PubMed ID: 8529004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-pore-domain potassium channels contribute to neuronal potassium release and glial potassium buffering in the rat hippocampus.
    Päsler D; Gabriel S; Heinemann U
    Brain Res; 2007 Oct; 1173():14-26. PubMed ID: 17850772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glial calcium.
    Finkbeiner SM
    Glia; 1993 Oct; 9(2):83-104. PubMed ID: 8244537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evoked and spontaneous extracellular potassium shifts in the cerebral cortex of unanaesthetized cats.
    Molnár M; Skinner JE
    Acta Physiol Hung; 1983; 61(4):265-79. PubMed ID: 6316727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of astroglia to functionally activated energy metabolism.
    Sokoloff L; Takahashi S; Gotoh J; Driscoll BF; Law MJ
    Dev Neurosci; 1996; 18(5-6):344-52. PubMed ID: 8940605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Biochemistry of active transport of Na+ and K+ ions].
    Szmigielski S
    Postepy Biochem; 1971; 17(2):321-31. PubMed ID: 5125499
    [No Abstract]   [Full Text] [Related]  

  • 34. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina.
    Skatchkov SN; Krusek J; Reichenbach A; Orkand RK
    Glia; 1999 Aug; 27(2):171-80. PubMed ID: 10417816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative examination of dynamic interneuronal coupling via single-spike extracellular potassium ion transients.
    Lebovitz RM
    J Theor Biol; 1996 May; 180(1):11-25. PubMed ID: 8763355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Studies on potassium transport through glial cell membranes (author's transl)].
    Coles JA; Gardner-Medwin AR; Tsacopoulos M
    Klin Monbl Augenheilkd; 1980 Apr; 176(4):522-3. PubMed ID: 7421023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kir4.1-mediated spatial buffering of K(+): experimental challenges in determination of its temporal and quantitative contribution to K(+) clearance in the brain.
    Larsen BR; MacAulay N
    Channels (Austin); 2014; 8(6):544-50. PubMed ID: 25483287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission.
    Krív N; Syková E; Vyklický L
    J Physiol; 1975 Jul; 249(1):167-82. PubMed ID: 168359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of extracellular calcium and its functional implications.
    Nicholson C
    Fed Proc; 1980 Apr; 39(5):1519-23. PubMed ID: 6244979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of extracellular potassium levels by retinal glial cell K+ siphoning.
    Newman EA; Frambach DA; Odette LL
    Science; 1984 Sep; 225(4667):1174-5. PubMed ID: 6474173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.