These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7364454)

  • 1. Reduction of cell injury in hypoxic cultures of rat myocardial cells by methylprednisolone.
    Acosta D; Puckett M; Li CP
    In Vitro; 1980 Feb; 16(2):93-6. PubMed ID: 7364454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injury to primary cultures of rat heart endothelial cells by hypoxia and glucose deprivation.
    Acosta D; Li CP
    In Vitro; 1979 Nov; 15(11):929-34. PubMed ID: 540918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ischemic myocardial injury in cultured heart cells: leakage of cytoplasmic enzymes from injured cells.
    Acosta D; Puckett M; McMillin R
    In Vitro; 1978 Aug; 14(8):728-32. PubMed ID: 689709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell injury of cultured rat myocardial cells after reoxygenation of hypoxic cultures in the presence and absence of calcium.
    Acosta D; Ramos K; Li-Goldman CP
    In Vitro; 1984 Aug; 20(8):642-6. PubMed ID: 6500603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Protection of hepatocyte growth factor on neurons subjected to oxygen-glucose deprivation/reperfusion].
    He F; Wu LX; Liu FY; Yang LJ; Zhang Y; Zhang HF; Zhou X; Huang BS; Deng XL
    Sheng Li Xue Bao; 2008 Apr; 60(2):235-42. PubMed ID: 18425312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen and substrate deprivation on isolated rat cardiac myocytes: temporal relationship between electromechanical and biochemical consequences.
    Fantini E; Athias P; Courtois M; Khatami S; Grynberg A; Chevalier A
    Can J Physiol Pharmacol; 1990 Aug; 68(8):1148-56. PubMed ID: 2390741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.
    Tian T; Zeng J; Zhao G; Zhao W; Gao S; Liu L
    Exp Biol Med (Maywood); 2018 Jan; 243(1):78-86. PubMed ID: 29073777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderate hypothermia initiated during oxygen-glucose deprivation preserves HL-1 cardiomyocytes.
    Tong G; Walker C; Bührer C; Berger F; Miera O; Schmitt KR
    Cryobiology; 2015 Apr; 70(2):101-8. PubMed ID: 25555716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anabolic-androgenic steroid-induced toxicity in primary neonatal rat myocardial cell cultures.
    Welder AA; Robertson JW; Fugate RD; Melchert RB
    Toxicol Appl Pharmacol; 1995 Aug; 133(2):328-42. PubMed ID: 7645030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hyaluronidase and methylprednisolone on myocardial function, glucose metabolism, and coronary flow in the isolated ischemic rat heart.
    Rovetto MJ
    Circ Res; 1977 Sep; 41(3):373-9. PubMed ID: 890892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of hypoxia-induced injury in cultured rat astrocytes by high levels of glucose.
    Kelleher JA; Chan PH; Chan TY; Gregory GA
    Stroke; 1993 Jun; 24(6):855-63. PubMed ID: 8506557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation.
    Fantini E; Demaison L; Sentex E; Grynberg A; Athias P
    J Mol Cell Cardiol; 1994 Aug; 26(8):949-58. PubMed ID: 7799450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular injury of primary cultures of rat myocytes incubated in calcium-free medium followed by recovery in calcium.
    Acosta D; Ramos K; Li-Goldman CP
    In Vitro; 1983 Feb; 19(2):141-4. PubMed ID: 6826198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia.
    Silverman HS; Wei S; Haigney MC; Ocampo CJ; Stern MD
    Circ Res; 1997 May; 80(5):699-707. PubMed ID: 9130451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial metabolic effects of methylprednisolone sodium succinate in acute myocardial ischemia.
    Masters TN; Harbold NB; Hall DG; Jackson RD; Mullen DC; Daugherty HK; Robicsek F
    Am J Cardiol; 1976 Mar; 37(4):557-63. PubMed ID: 1258793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible role of cyclic nucleotides in the mechanism of the protective effect of methylprednisolone on the hypoxic rat heart.
    Busuttil RW; Graeff RM; George WJ
    J Cyclic Nucleotide Res; 1978 Jun; 4(3):209-18. PubMed ID: 214463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel Na+/Ca2+ channel blocker, NS-7, suppresses hypoxic injury in rat cerebrocortical slices.
    Tatsumi S; Itoh Y; Ukai Y; Kimura K
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Aug; 358(2):191-6. PubMed ID: 9750004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.
    Rocha-Singh KJ; Honbo NY; Karliner JS
    J Clin Invest; 1991 Jul; 88(1):204-13. PubMed ID: 1647415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes.
    Safran N; Shneyvays V; Balas N; Jacobson KA; Nawrath H; Shainberg A
    Mol Cell Biochem; 2001 Jan; 217(1-2):143-52. PubMed ID: 11269659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for oxygen glucose deprivation model in organotypic spinal cord slices.
    Liu JJ; Ding XY; Xiang L; Zhao F; Huang SL
    Brain Res Bull; 2017 Oct; 135():163-169. PubMed ID: 29054697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.