These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 7365332)

  • 1. Biased random walk models for chemotaxis and related diffusion approximations.
    Alt W
    J Math Biol; 1980 Apr; 9(2):147-77. PubMed ID: 7365332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Kinetic analysis of the chemotaxis of bacteria].
    Zaval'skiĭ LIu
    Biofizika; 1988; 33(2):328-32. PubMed ID: 3390483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traveling waves in a chemotactic model.
    Nagai T; Ikeda T
    J Math Biol; 1991; 30(2):169-84. PubMed ID: 1765737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency.
    Chen KC; Ford RM; Cummings PT
    J Math Biol; 2003 Dec; 47(6):518-46. PubMed ID: 14618378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model.
    Hwang S; Lee S; Hwang HJ
    Math Biosci Eng; 2021 Sep; 18(6):8524-8534. PubMed ID: 34814310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemotaxis and chemokinesis in eukaryotic cells: the Keller-Segel equations as an approximation to a detailed model.
    Sherratt JA
    Bull Math Biol; 1994 Jan; 56(1):129-46. PubMed ID: 8111316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From a discrete model of chemotaxis with volume-filling to a generalized Patlak-Keller-Segel model.
    Bubba F; Lorenzi T; Macfarlane FR
    Proc Math Phys Eng Sci; 2020 May; 476(2237):20190871. PubMed ID: 32523414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway.
    Perthame B; Tang M; Vauchelet N
    J Math Biol; 2016 Nov; 73(5):1161-1178. PubMed ID: 26993136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic model of leukocyte chemosensory movement.
    Tranquillo RT; Lauffenburger DA
    J Math Biol; 1987; 25(3):229-62. PubMed ID: 3625051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of internal dynamics on chemotactic aggregation of bacteria.
    Yasuda S
    Phys Biol; 2021 Sep; 18(6):. PubMed ID: 34425564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traveling wave solutions of a singular Keller-Segel system with logistic source.
    Li T; Wang ZA
    Math Biosci Eng; 2022 Jun; 19(8):8107-8131. PubMed ID: 35801459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling.
    Xue C
    J Math Biol; 2015 Jan; 70(1-2):1-44. PubMed ID: 24366373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of chemotaxis and chemokinesis on leukocyte locomotion: a new interpretation of experimental results.
    Byrne HM; Cave G; McElwain DL
    IMA J Math Appl Med Biol; 1998 Sep; 15(3):235-56. PubMed ID: 9773518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion models for chemotaxis: a statistical analysis of noninteractive unicellular movement.
    Watkins JC; Woessner B
    Math Biosci; 1991 May; 104(2):271-303. PubMed ID: 1804464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal structure of migrating chemotactic band of Escherichia coli. I. Traveling band profile.
    Holz M; Chen SH
    Biophys J; 1979 May; 26(2):243-61. PubMed ID: 400469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection.
    van Haastert PJ; Postma M
    Biophys J; 2007 Sep; 93(5):1787-96. PubMed ID: 17513372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized transport model for biased cell migration in an anisotropic environment.
    Dickinson RB
    J Math Biol; 2000 Feb; 40(2):97-135. PubMed ID: 10743598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial chemotaxis without gradient-sensing.
    Yoon C; Kim YJ
    J Math Biol; 2015 May; 70(6):1359-80. PubMed ID: 24865467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic models for cell motion and taxis.
    Ionides EL; Fang KS; Isseroff RR; Oster GF
    J Math Biol; 2004 Jan; 48(1):23-37. PubMed ID: 14685770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model.
    Phan TV; Mattingly HH; Vo L; Marvin JS; Looger LL; Emonet T
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2309251121. PubMed ID: 38194458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.