These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 736570)

  • 1. Inhibition of protein secretion and protein kinase activity in the locust fat body by diamide (azodicarboxylic acid-bis-dimethylamide).
    Harry P; Pines M; Applebaum SW
    Arch Biochem Biophys; 1978 Nov; 191(1):325-30. PubMed ID: 736570
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of diamide (azodicarboxylic acid-bis-dimethylamide) on sulfhydryl group content, proteins, and the location of phosphatidylethanolamine in human blood platelets.
    Ostermann G; Spangenberg P; Meyer M; Herrmann FH; Till U
    Acta Haematol; 1982; 68(4):278-84. PubMed ID: 6217711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reversible inhibition of gluconeogenesis in kidney cortex by diazenedicarboxylic acid bis (N,N-dimethylamide).
    Pillion D; Leibach FH; Rocha H; Von Tersch FJ; Mendicino J
    Eur J Biochem; 1977 Sep; 79(1):73-83. PubMed ID: 21091
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of diamide (azodicarboxylic acid-bis-dimethylamide) on arachidonic acid release from human blood platelet phospholipids.
    Lösche W; Michel E; Thielmann K; Till U
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1984; 111(6):769-73. PubMed ID: 6083952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects in vitro of diazenedicarboxylic acid-bis-(N, N-dimethylamide) on enzyme secretion and protein phosphorylation in the rat exocrine pancreas.
    Thiry P; Lambert M; Christophe J
    Arch Int Physiol Biochim; 1976; 84(3):665-6. PubMed ID: 64222
    [No Abstract]   [Full Text] [Related]  

  • 6. Reversible inhibition by diamide of cyclic AMP-dependent protein kinases from bovine thyroid.
    McClung M; Miller J
    Biochem Biophys Res Commun; 1977 Jun; 76(3):910-6. PubMed ID: 197932
    [No Abstract]   [Full Text] [Related]  

  • 7. Fat transport in the locust, Locusta migratoria: the role of protein synthesis.
    Peled Y; Tietz A
    Biochim Biophys Acta; 1973 Mar; 296(3):499-509. PubMed ID: 4688635
    [No Abstract]   [Full Text] [Related]  

  • 8. Aggregation of intramembrane particles in erythrocyte membranes treated with diamide.
    Kurantsin-Mills J; Lessin LS
    Biochim Biophys Acta; 1981 Feb; 641(1):129-37. PubMed ID: 7213709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects in adipocytes of diamide on GSH levels, glucose uptake and cell integrity.
    Goldstein BJ; Livingston JN
    Biochim Biophys Acta; 1978 Oct; 513(1):99-105. PubMed ID: 718890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of diamide on proton translocation by the mitochondrial H+-ATPase.
    Zanotti F; Guerrieri F; Scarfò R; Berden J; Papa S
    Biochem Biophys Res Commun; 1985 Nov; 132(3):985-90. PubMed ID: 2866768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a thioreactive agent, diamide, on neuromuscular transmission in lobster.
    Colton CA; Colton JS
    Am J Physiol; 1982 Jan; 242(1):C59-64. PubMed ID: 6277199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Lens fiber damage induced by diamide and its recovery by dithiothreitol (author's transl)].
    Teshima R; Taura T; Murata T
    Nippon Ganka Gakkai Zasshi; 1982; 86(5):525-30. PubMed ID: 6981302
    [No Abstract]   [Full Text] [Related]  

  • 13. Reciprocal control of membrane permeability by ATP in 3T6 cells: effect of diamide.
    Roselino E; Pettican P; Dicker P; Heppel L; Rozengurt E
    FEBS Lett; 1980 Jul; 116(2):169-72. PubMed ID: 6447619
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of the effects of insulin and insulin-like agents on different aspects of adipocyte metabolism.
    Olefsky JM
    Horm Metab Res; 1979 Mar; 11(3):209-13. PubMed ID: 447201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of rheological properties of human erythrocytes by crosslinking of membrane proteins.
    Maeda N; Kon K; Imaizumi K; Sekiya M; Shiga T
    Biochim Biophys Acta; 1983 Oct; 735(1):104-12. PubMed ID: 6626542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of glutathione oxidation on renal cortex taurine transport.
    Chesney RW; Jax DK
    Life Sci; 1979 Oct; 25(17):1497-1506. PubMed ID: 513967
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of protein phosphorylation and induction of protein cross-linking in erythrocyte membranes by diamide.
    Hosey MM; Plut DA; Tao M
    Biochim Biophys Acta; 1978 Jan; 506(2):211-20. PubMed ID: 620030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of diazene dicarboxylic acid bis-(N, N-dimethylamide) on glycine uptake by newborn renal cortex.
    Roth KS; Serabian MA; Rea C; Segal S
    Pediatr Pharmacol (New York); 1980; 1(2):161-9. PubMed ID: 7346738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in morphology and protein pattern of human blood platelets during irreversible and diamide mediated reversible aggregation.
    Hofmann B; Danz R; Hofmann J; Pescarmona G; Bosia A; Meyer M; Lösche W; Till U
    Biomed Biochim Acta; 1983; 42(5):489-501. PubMed ID: 6418156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a role of cyclic AMP-dependent protein kinase in TSH action.
    McClung M; Miller J
    Trans Assoc Am Physicians; 1977; 90():270-80. PubMed ID: 205982
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.